BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28813903)

  • 1. Let's do this together: Bi-Manu-Interact, a novel device for studying human haptic interactive behavior.
    Ivanova E; Krause A; Schalicke M; Schellhardt F; Jankowski N; Achner J; Schmidt H; Joebges M; Kruger J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():708-713. PubMed ID: 28813903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program.
    Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BeMobil: Developing a user-friendly and motivating telerehabilitation system for motor relearning after stroke.
    Minge M; Ivanova E; Lorenz K; Joost G; Thuring M; Kruger J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():870-875. PubMed ID: 28813930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroke Rehabilitation: Therapy Robots and Assistive Devices.
    Klamroth-Marganska V
    Adv Exp Med Biol; 2018; 1065():579-587. PubMed ID: 30051408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.
    Campolo D; Tommasino P; Gamage K; Klein J; Hughes CM; Masia L
    J Neurosci Methods; 2014 Sep; 235():285-97. PubMed ID: 25058923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MIT-Skywalker: On the use of a markerless system.
    Goncalves RS; Hamilton T; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():205-210. PubMed ID: 28813819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Users perspectives on interactive distance technology enabling home-based motor training for stroke patients.
    Ehn M; Hansson P; Sjölinder M; Boman IL; Folke M; Sommerfeld D; Borg J; Palmcrantz S
    Stud Health Technol Inform; 2015; 211():145-52. PubMed ID: 25980861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do strength and coordination recovery interact after stroke? A computational model for informing robotic training.
    Norman SL; Lobo-Prat J; Reinkensmeyer DJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():181-186. PubMed ID: 28813815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and optimization of PARTNER: a parallel actuated robotic trainer for NEuroRehabilitation.
    Taheri H; Goodwin SA; Tigue JA; Perry JC; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2128-2132. PubMed ID: 28268752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensating for telecommunication delays during robotic telerehabilitation.
    Consoni LJ; Siqueira AAG; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():812-817. PubMed ID: 28813920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports.
    Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIT-Skywalker: Evaluating comfort of bicycle/saddle seat.
    Goncalves RS; Hamilton T; Daher AR; Hirai H; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():516-520. PubMed ID: 28813872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On stability and passivity of haptic devices characterized by a series elastic actuation and considerable end-point mass.
    Oblak J; Matjačić Z
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975497. PubMed ID: 22275694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based assistance-as-needed for robotic movement therapy after stroke.
    Taheri H; Reinkensmeyer DJ; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2124-2127. PubMed ID: 28268751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
    Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.