These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28813905)
1. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. Pezent E; Rose CG; Deshpande AD; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905 [TBL] [Abstract][Full Text] [Related]
2. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
3. System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation. Pehlivan AU; Rose C; O'Malley MK IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650462. PubMed ID: 24187279 [TBL] [Abstract][Full Text] [Related]
4. Assessing Wrist Movement With Robotic Devices. Rose CG; Pezent E; Kann CK; Deshpande AD; O'Malley MK IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1585-1595. PubMed ID: 29994401 [TBL] [Abstract][Full Text] [Related]
5. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846 [TBL] [Abstract][Full Text] [Related]
6. Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation. Perry JC; Trimble S; Castilho Machado LG; Schroeder JS; Belloso A; Rodriguez-de-Pablo C; Keller T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():594-597. PubMed ID: 28268400 [TBL] [Abstract][Full Text] [Related]
7. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation. Biggar S; Yao W IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796 [TBL] [Abstract][Full Text] [Related]
8. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging. Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591 [TBL] [Abstract][Full Text] [Related]
9. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation. Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528 [TBL] [Abstract][Full Text] [Related]
10. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait. Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200 [TBL] [Abstract][Full Text] [Related]
11. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance. Heung KHL; Tang ZQ; Ho L; Tung M; Li Z; Tong RKY IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():65-70. PubMed ID: 31374608 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists. Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178 [TBL] [Abstract][Full Text] [Related]
13. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction. Jarrett C; McDaid AJ IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475 [TBL] [Abstract][Full Text] [Related]
14. Haptic Stimulation for Improving Training of a Motor Imagery BCI Developed for a Hand-Exoskeleton in Rehabilitation. Missiroli F; Barsotti M; Leonardis D; Gabardi M; Rosati G; Frisoli A IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1127-1132. PubMed ID: 31374781 [TBL] [Abstract][Full Text] [Related]
15. Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings. Singh N; Saini M; Anand S; Kumar N; Srivastava MVP; Mehndiratta A IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2369-2377. PubMed ID: 31545737 [TBL] [Abstract][Full Text] [Related]
16. Estimating anatomical wrist joint motion with a robotic exoskeleton. Rose CG; Kann CK; Deshpande AD; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1437-1442. PubMed ID: 28814022 [TBL] [Abstract][Full Text] [Related]
17. Design and Performance Analysis of a Bioelectronic Controlled Hybrid Serial-Parallel Wrist Exoskeleton. Zhang X; Wang M; Wang H; Wang F; Chen L; Mu W; Wang J; Kang X IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2665-2675. PubMed ID: 37285244 [TBL] [Abstract][Full Text] [Related]
18. The effect of robot dynamics on smoothness during wrist pointing. Erwin A; Pezent E; Bradley J; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():597-602. PubMed ID: 28813885 [TBL] [Abstract][Full Text] [Related]
19. Design-validation of a hand exoskeleton using musculoskeletal modeling. Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646 [TBL] [Abstract][Full Text] [Related]
20. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis. Nazari V; Pouladian M; Zheng YP; Alam M Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]