These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 28813906)
1. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906 [TBL] [Abstract][Full Text] [Related]
2. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
3. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314 [TBL] [Abstract][Full Text] [Related]
4. Design and testing of an under-actuated surface EMG-driven hand exoskeleton. Lince A; Celadon N; Battezzato A; Favetto A; Appendino S; Ariano P; Paleari M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():670-675. PubMed ID: 28813897 [TBL] [Abstract][Full Text] [Related]
5. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. Meeker C; Park S; Bishop L; Stein J; Ciocarlie M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985 [TBL] [Abstract][Full Text] [Related]
6. Training wrist extensor function and detecting unwanted movement strategies in an EMG-controlled visuomotor task. Lyu M; Lambelet C; Woolley D; Zhang X; Chen W; Ding X; Gassert R; Wenderoth N IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1549-1555. PubMed ID: 28814040 [TBL] [Abstract][Full Text] [Related]
7. Experimental evaluation of a sEMG-based control for elbow wearable assistive devices during load lifting tasks. Meattini R; Palli G; Melchiorri C IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():140-145. PubMed ID: 28813808 [TBL] [Abstract][Full Text] [Related]
8. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
9. Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Khokhar ZO; Xiao ZG; Menon C Biomed Eng Online; 2010 Aug; 9():41. PubMed ID: 20796304 [TBL] [Abstract][Full Text] [Related]
10. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation. Bian H; Chen Z; Wang H; Zhao T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900 [TBL] [Abstract][Full Text] [Related]
11. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
12. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911 [TBL] [Abstract][Full Text] [Related]
14. Fully embedded myoelectric control for a wearable robotic hand orthosis. Ryser F; Butzer T; Held JP; Lambercy O; Gassert R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():615-621. PubMed ID: 28813888 [TBL] [Abstract][Full Text] [Related]
15. Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke. Shihomi K; Koji O; Tadao T; Yuichi S; Yoshiyuki H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():304-307. PubMed ID: 28813836 [TBL] [Abstract][Full Text] [Related]
16. Interactive Virtual Ankle Movement Controlled by Wrist sEMG Improves Motor Imagery: An Exploratory Study. Xiao Y; Bai H; Gao Y; Hu B; Zheng J; Cai X; Rao J; Li X; Hao A IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5507-5524. PubMed ID: 37432832 [TBL] [Abstract][Full Text] [Related]
17. HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation. Sandison M; Phan K; Casas R; Nguyen L; Lum M; Pergami-Peries M; Lum PS Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4867-4872. PubMed ID: 33019080 [TBL] [Abstract][Full Text] [Related]
18. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection. Ergeneci M; Gokcesu K; Ertan E; Kosmas P IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):68-79. PubMed ID: 29377797 [TBL] [Abstract][Full Text] [Related]
19. Tongue-controlled robotic rehabilitation: A feasibility study in people with stroke. Ostadabbas S; Housley SN; Sebkhi N; Richards K; Wu D; Zhang Z; Rodriguez MG; Warthen L; Yarbrough C; Belagaje S; Butler AJ; Ghovanloo M J Rehabil Res Dev; 2016; 53(6):989-1006. PubMed ID: 28475207 [TBL] [Abstract][Full Text] [Related]
20. Clinical Features to Predict the Use of a sEMG Wearable Device (REMO Pregnolato G; Rimini D; Baldan F; Maistrello L; Salvalaggio S; Celadon N; Ariano P; Pirri CF; Turolla A Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]