These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28813924)

  • 1. Probabilistic vs linear blending approaches to shared control for wheelchair driving.
    Ezeh C; Trautman P; Devigne L; Bureau V; Babel M; Carlson T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():835-840. PubMed ID: 28813924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voice control of a powered wheelchair.
    Simpson RC; Levine SP
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):122-5. PubMed ID: 12236450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Driving Behaviour Model of Electrical Wheelchair Users.
    Onyango SO; Hamam Y; Djouani K; Daachi B; Steyn N
    Comput Intell Neurosci; 2016; 2016():7189267. PubMed ID: 27148362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared control strategies for obstacle avoidance tasks in an intelligent wheelchair.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4254-7. PubMed ID: 19163652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Bayesian recursive algorithm to find free-spaces for an intelligent wheelchair.
    Nguyen AV; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7250-3. PubMed ID: 22256012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collaborative control for a robotic wheelchair: evaluation of performance, attention, and workload.
    Carlson T; Demiris Y
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):876-88. PubMed ID: 22275718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of distinct input methods of an intelligent wheelchair in simulated and real environments: a performance and usability study.
    Faria BM; Vasconcelos S; Reis LP; Lau N
    Assist Technol; 2013; 25(2):88-98. PubMed ID: 23923691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic adaptation in the NavChair Assistive Wheelchair Navigation System.
    Simpson RC; Levine SP
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):452-63. PubMed ID: 10609633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.