BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 28813929)

  • 1. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.
    Mora N; De Munari I; Ciampolini P; Del R Millán J
    Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive brain-computer interface system: towards its application as assistive technology.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Schalk G; Oriolo G; Cherubini A; Marciani MG; Babiloni F
    Brain Res Bull; 2008 Apr; 75(6):796-803. PubMed ID: 18394526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EEG-based brain-computer interface for real-time multi-task robotic control.
    An Y; Wong JKW; Ling SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-computer interface for robot control with eye artifacts for assistive applications.
    Karas K; Pozzi L; Pedrocchi A; Braghin F; Roveda L
    Sci Rep; 2023 Oct; 13(1):17512. PubMed ID: 37845318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Control.
    Mishchenko Y; Kaya M; Ozbay E; Yanar H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):977-987. PubMed ID: 30130168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
    Costa Á; Hortal E; Iáñez E; Azorín JM
    PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of brain-computer interfaces to the control of robotic and prosthetic arms.
    Vilela M; Hochberg LR
    Handb Clin Neurol; 2020; 168():87-99. PubMed ID: 32164870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.