These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28813933)

  • 41. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.
    Pérez PJ; Garcia-Zapirain B; Mendez-Zorrilla A
    Technol Health Care; 2015; 23(3):351-7. PubMed ID: 25669209
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; García GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assist-as-needed path control for the PASCAL rehabilitation robot.
    Keller U; Rauter G; Riener R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650475. PubMed ID: 24187292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning Post-Stroke Gait Training Strategies by Modeling Patient-Therapist Interaction.
    Sorkhabadi SMR; Smith M; Khodmbashi R; Lopez R; Raasch M; Maruyama T; Kwasnica C; Zhang W
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar; PP():. PubMed ID: 37028304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators.
    Ogenyi UE; Liu J; Yang C; Ju Z; Liu H
    IEEE Trans Cybern; 2021 Apr; 51(4):1888-1901. PubMed ID: 31751257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preliminary testing by adults of a haptics-assisted robot platform designed for children with physical impairments to access play.
    Sakamaki I; Adams K; Medina MFG; Cruz JLC; Jafari N; Tavakoli M; Janz H
    Assist Technol; 2018; 30(5):242-250. PubMed ID: 28696831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Learning curves of robot-assisted laparoscopic surgery compared with conventional laparoscopic surgery: an experimental study evaluating skill acquisition of robot-assisted laparoscopic tasks compared with conventional laparoscopic tasks in inexperienced users.
    Heemskerk J; van Gemert WG; de Vries J; Greve J; Bouvy ND
    Surg Laparosc Endosc Percutan Tech; 2007 Jun; 17(3):171-4. PubMed ID: 17581459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.
    Hussein S; Kruger J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.
    Gilliaux M; Renders A; Dispa D; Holvoet D; Sapin J; Dehez B; Detrembleur C; Lejeune TM; Stoquart G
    Neurorehabil Neural Repair; 2015 Feb; 29(2):183-92. PubMed ID: 25015650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury.
    Emken JL; Harkema SJ; Beres-Jones JA; Ferreira CK; Reinkensmeyer DJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):322-34. PubMed ID: 18232376
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction with a reactive partner improves learning in contrast to passive guidance.
    Ivanova E; Eden J; Carboni G; Krüger J; Burdet E
    Sci Rep; 2022 Sep; 12(1):15821. PubMed ID: 36138031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Head Motion and Head Gesture-Based Robot Control: A Usability Study.
    Jackowski A; Gebhard M; Thietje R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):161-170. PubMed ID: 29324407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).
    Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An informationally structured room for robotic assistance.
    Tsuji T; Mozos OM; Chae H; Pyo Y; Kusaka K; Hasegawa T; Morooka K; Kurazume R
    Sensors (Basel); 2015 Apr; 15(4):9438-65. PubMed ID: 25912347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.