These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28813934)
1. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. Sarasola-Sanz A; Irastorza-Landa N; Lopez-Larraz E; Bibian C; Helmhold F; Broetz D; Birbaumer N; Ramos-Murguialday A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():895-900. PubMed ID: 28813934 [TBL] [Abstract][Full Text] [Related]
2. A hybrid brain-muscle-machine interface for stroke rehabilitation: Usability and functionality validation in a 2-week intensive intervention. Sarasola-Sanz A; Ray AM; Insausti-Delgado A; Irastorza-Landa N; Mahmoud WJ; Brötz D; Bibián-Nogueras C; Helmhold F; Zrenner C; Ziemann U; López-Larraz E; Ramos-Murguialday A Front Bioeng Biotechnol; 2024; 12():1330330. PubMed ID: 38681960 [No Abstract] [Full Text] [Related]
3. On the design of EEG-based movement decoders for completely paralyzed stroke patients. Spüler M; López-Larraz E; Ramos-Murguialday A J Neuroeng Rehabil; 2018 Nov; 15(1):110. PubMed ID: 30458838 [TBL] [Abstract][Full Text] [Related]
4. A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis. Loopez-Larraz E; Birbaumer N; Ramos-Murguialday A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2000-2003. PubMed ID: 30440792 [TBL] [Abstract][Full Text] [Related]
5. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T; Sakurada T; Koike Y; Kansaku K J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293 [TBL] [Abstract][Full Text] [Related]
6. Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke? Balasubramanian S; Garcia-Cossio E; Birbaumer N; Burdet E; Ramos-Murguialday A IEEE Trans Biomed Eng; 2018 Dec; 65(12):2790-2797. PubMed ID: 29993449 [TBL] [Abstract][Full Text] [Related]
7. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study. Irimia DC; Cho W; Ortner R; Allison BZ; Ignat BE; Edlinger G; Guger C Artif Organs; 2017 Nov; 41(11):E178-E184. PubMed ID: 29148137 [TBL] [Abstract][Full Text] [Related]
8. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation. Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976 [TBL] [Abstract][Full Text] [Related]
9. Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial. Sullivan JL; Bhagat NA; Yozbatiran N; Paranjape R; Losey CG; Grossman RG; Contreras-Vidal JL; Francisco GE; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():122-127. PubMed ID: 28813805 [TBL] [Abstract][Full Text] [Related]
10. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. Yin YH; Fan YJ; Xu LD IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763 [TBL] [Abstract][Full Text] [Related]
11. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Cincotti F; Pichiorri F; Aricò P; Aloise F; Leotta F; de Vico Fallani F; Millán Jdel R; Molinari M; Mattia D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4112-5. PubMed ID: 23366832 [TBL] [Abstract][Full Text] [Related]
12. Brain-computer interface (BCI) operation: signal and noise during early training sessions. McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184 [TBL] [Abstract][Full Text] [Related]
13. Exploring high-density corticomuscular networks after stroke to enable a hybrid Brain-Computer Interface for hand motor rehabilitation. Pichiorri F; Toppi J; de Seta V; Colamarino E; Masciullo M; Tamburella F; Lorusso M; Cincotti F; Mattia D J Neuroeng Rehabil; 2023 Jan; 20(1):5. PubMed ID: 36639665 [TBL] [Abstract][Full Text] [Related]
14. Influence of artifacts on movement intention decoding from EEG activity in severely paralyzed stroke patients. Lopez-Larraz E; Bibian C; Birbaumer N; Ramos-Murguialday A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():901-906. PubMed ID: 28813935 [TBL] [Abstract][Full Text] [Related]
15. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971 [TBL] [Abstract][Full Text] [Related]
16. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project. Ambrosini E; Ferrante S; Zajc J; Bulgheroni M; Baccinelli W; d'Amico E; Schauer T; Wiesener C; Russold M; Gfoehler M; Puchinger M; Weber M; Becker S; Krakow K; Rossini M; Proserpio D; Gasperini G; Molteni F; Ferrigno G; Pedrocchi A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():56-61. PubMed ID: 28813793 [TBL] [Abstract][Full Text] [Related]
18. Brain-machine interfaces for rehabilitation in stroke: A review. López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Birbaumer N; Ramos-Murguialday A NeuroRehabilitation; 2018; 43(1):77-97. PubMed ID: 30056435 [TBL] [Abstract][Full Text] [Related]
19. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm. Costa Á; Hortal E; Iáñez E; Azorín JM PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372 [TBL] [Abstract][Full Text] [Related]
20. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]