These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28813938)

  • 1. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.
    Long Y; Du ZJ; Chen CF; Dong W; Wang WD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():919-924. PubMed ID: 28813938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton.
    Sun W; Lin JW; Su SF; Wang N; Er MJ
    IEEE Trans Cybern; 2021 Mar; 51(3):1099-1109. PubMed ID: 32112693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):68-77. PubMed ID: 22271684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG.
    Chen X; Zeng Y; Yin Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):577-588. PubMed ID: 27333607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.
    Ma Q; Ji L; Wang R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving Gaussian Process Autoregression Based Learning of Human Motion Intent Using Improved Energy Kernel Method of EMG.
    Zeng Y; Yang J; Peng C; Yin Y
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2556-2565. PubMed ID: 30629487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.
    Gui K; Liu H; Zhang D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.
    Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint stiffness modulation of compliant actuators for lower limb exoskeletons.
    Gonzalez-Vargas J; Shimoda S; Asin-Prieto G; Pons JL; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1287-1292. PubMed ID: 28813998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.