These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28813965)

  • 1. Cheap or Robust? The practical realization of self-driving wheelchair technology.
    Burhanpurkar M; Labbe M; Guan C; Michaud F; Kelly J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1079-1086. PubMed ID: 28813965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-autonomous mobility assistance for power wheelchair users navigating crowded environments.
    Ashley D; Ashley K; Alqasemi R; Dubey R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1025-1030. PubMed ID: 28813956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Control to Improve Navigation and Manipulation of Power Wheelchairs.
    Carey SL; Aguirrezabal A; Sundarrao S; Alqasemi R; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():945-948. PubMed ID: 30440546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of safety concept of electric wheelchair driving support system based on assessment of risk.
    Kurozumi R; Yamamoto T; Fujisawa S
    Stud Health Technol Inform; 2015; 217():984-7. PubMed ID: 26294597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obstacle avoidance for power wheelchair using bayesian neural network.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4771-4. PubMed ID: 18003072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3463-6. PubMed ID: 19163454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design considerations for a personalized wheelchair navigation system.
    Ding D; Parmanto B; Karimi HA; Roongpiboonsopit D; Pramana G; Conahan T; Kasemsuppakorn P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4790-3. PubMed ID: 18003077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey.
    Fehr L; Langbein WE; Skaar SB
    J Rehabil Res Dev; 2000; 37(3):353-60. PubMed ID: 10917267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared control strategies for obstacle avoidance tasks in an intelligent wheelchair.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4254-7. PubMed ID: 19163652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current state of mobility technology provision in less-resourced countries.
    Jefferds AN; Beyene NM; Upadhyay N; Shoker P; Pearlman JL; Cooper RA; Wee J
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):221-42. PubMed ID: 19951788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User-centred design, evaluation, and refinement of a wireless power wheelchair charging system.
    Philips GR; Clark C; Wallace J; Coopmans C; Pantic Z; Bodine C
    Disabil Rehabil Assist Technol; 2022 Oct; 17(7):815-827. PubMed ID: 32924672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technological advances in powered wheelchairs.
    Edlich RF; Nelson KP; Foley ML; Buschbacher RM; Long WB; Ma EK
    J Long Term Eff Med Implants; 2004; 14(2):107-30. PubMed ID: 15099188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheelchair Neuro Fuzzy Control and Tracking System Based on Voice Recognition.
    Abdulghani MM; Al-Aubidy KM; Ali MM; Hamarsheh QJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an immersive simulator for assisted power wheelchair driving.
    Devigne L; Babel M; Nouviale F; Narayanan VK; Pasteau F; Gallien P
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():995-1000. PubMed ID: 28813951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.