BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28813971)

  • 1. Feasibility study of transtibial amputee walking using a powered prosthetic foot.
    Grimmer M; Holgate M; Ward J; Boehler A; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1118-1123. PubMed ID: 28813971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW; Salami F; De Asha AR; Block J; Putz C; Wolf SI; Alimusaj M
    Gait Posture; 2018 Jul; 64():174-180. PubMed ID: 29913354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a powered ankle-foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations.
    Montgomery JR; Grabowski AM
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts.
    Schmalz T; Altenburg B; Ernst M; Bellmann M; Rosenbaum D
    Gait Posture; 2019 Feb; 68():161-167. PubMed ID: 30497035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps.
    Pickle NT; Silverman AK; Wilken JM; Fey NP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1609-1614. PubMed ID: 28814050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A; Tranberg R; Halldorsdottir G; Briem K
    Disabil Rehabil Assist Technol; 2018 May; 13(4):388-393. PubMed ID: 28974119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J; Pros D
    Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation.
    Aldridge JM; Sturdy JT; Wilken JM
    Gait Posture; 2012 Jun; 36(2):291-5. PubMed ID: 22571821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA; Aldridge Whitehead J; Wilken JM
    PLoS One; 2016; 11(12):e0166815. PubMed ID: 27977681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants.
    De Pauw K; Cherelle P; Roelands B; Lefeber D; Meeusen R
    Prosthet Orthot Int; 2018 Oct; 42(5):504-510. PubMed ID: 29623812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics.
    Safaeepour Z; Esteki A; Tabatabai Ghomshe F; Mousavai ME
    Prosthet Orthot Int; 2014 Oct; 38(5):400-4. PubMed ID: 24532003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.