BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28813981)

  • 1. A magnetic compatible supernumerary robotic finger for functional magnetic resonance imaging (fMRI) acquisitions: Device description and preliminary results.
    Hussain I; Santarnecchi E; Leo A; Ricciardi E; Rossi S; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1177-1182. PubMed ID: 28813981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.
    Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger.
    Hussain I; Spagnoletti G; Salvietti G; Prattichizzo D
    Front Neurorobot; 2016; 10():18. PubMed ID: 27891088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simulation Framework for Virtual Prototyping of Robotic Exoskeletons.
    Agarwal P; Neptune RR; Deshpande AD
    J Biomech Eng; 2016 Jun; 138(6):061004. PubMed ID: 27018453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional MRI in Conjunction with a Novel MRI-compatible Hand-induced Robotic Device to Evaluate Rehabilitation of Individuals Recovering from Hand Grip Deficits.
    Ottensmeyer MP; Li S; De Novi G; Tzika AA
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31814610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finger motion sensors for fMRI motor studies.
    Schaechter JD; Stokes C; Connell BD; Perdue K; Bonmassar G
    Neuroimage; 2006 Jul; 31(4):1549-59. PubMed ID: 16624582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compatible electrocutaneous display for functional magnetic resonance imaging application.
    Hartwig V; Cappelli C; Vanello N; Ricciardi E; Scilingo EP; Giovannetti G; Santarelli MF; Positano V; Pietrini P; Landini L; Bicchi A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1021-4. PubMed ID: 17946436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.
    Tsekos NV; Khanicheh A; Christoforou E; Mavroidis C
    Annu Rev Biomed Eng; 2007; 9():351-87. PubMed ID: 17439358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel manipulation method of human body ownership using an fMRI-compatible master-slave system.
    Hara M; Salomon R; van der Zwaag W; Kober T; Rognini G; Nabae H; Yamamoto A; Blanke O; Higuchi T
    J Neurosci Methods; 2014 Sep; 235():25-34. PubMed ID: 24924875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An fMRI pilot study to evaluate brain activation associated with locomotion adaptation.
    Marchal-Crespo L; Hollnagel C; Brügger M; Kollias S; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975371. PubMed ID: 22275575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Supernumerary Soft Robotic Limb for Reducing Hand-Arm Vibration Syndromes Risks.
    Ciullo AS; Catalano MG; Bicchi A; Ajoudani A
    Front Robot AI; 2021; 8():650613. PubMed ID: 34490355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long sixth finger illusion: The representation of the supernumerary finger is not a copy and can be felt with varying lengths.
    Cadete D; Longo MR
    Cognition; 2022 Jan; 218():104948. PubMed ID: 34768121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.