These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28813981)

  • 21. Force sensing system for automated assessment of motor performance during fMRI.
    Rogers B; Zhang W; Narayana S; Lancaster JL; Robin DA; Fox PT
    J Neurosci Methods; 2010 Jun; 190(1):92-4. PubMed ID: 20417235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.
    Storti SF; Formaggio E; Beltramello A; Fiaschi A; Manganotti P
    Brain Topogr; 2010 Mar; 23(1):46-57. PubMed ID: 19921416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel MR-compatible device for providing forces to the human finger during functional neuroimaging studies.
    Jackson CP; Bowtell R; Morris PG; Jackson SR
    Neuroimage; 2008 May; 40(4):1731-7. PubMed ID: 18346913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain activity during stepping: a novel MRI-compatible device.
    Hollnagel C; Brügger M; Vallery H; Wolf P; Dietz V; Kollias S; Riener R
    J Neurosci Methods; 2011 Sep; 201(1):124-30. PubMed ID: 21827788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embodiment of supernumerary robotic limbs in virtual reality.
    Arai K; Saito H; Fukuoka M; Ueda S; Sugimoto M; Kitazaki M; Inami M
    Sci Rep; 2022 Jun; 12(1):9769. PubMed ID: 35760810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of motor familiarity during simple finger opposition tasks.
    Plata Bello J; Modroño C; Marcano F; González-Mora JL
    Brain Imaging Behav; 2015 Dec; 9(4):828-38. PubMed ID: 25511522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of a Passive Exoskeleton and a Robotic Supernumerary Finger for Grasping Compensation in Chronic Stroke Patients: The SoftPro Wearable System.
    Salvietti G; Franco L; Tschiersky M; Wolterink G; Bianchi M; Bicchi A; Barontini F; Catalano M; Grioli G; Poggiani M; Rossi S; Prattichizzo D
    Front Robot AI; 2021; 8():661354. PubMed ID: 34179107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-magnetic equipment for the high-resolution quantification of finger kinematics during functional studies of bimanual coordination.
    De Luca C; Bertollo M; Comani S
    J Neurosci Methods; 2010 Sep; 192(1):173-84. PubMed ID: 20670653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms.
    Schwindack C; Siminotto E; Meyer M; McNamara A; Marshall I; Wardlaw JM; Whittle IR
    Br J Neurosurg; 2005 Feb; 19(1):25-32. PubMed ID: 16147579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finger impedance evaluation by means of hand exoskeleton.
    Fiorilla AE; Nori F; Masia L; Sandini G
    Ann Biomed Eng; 2011 Dec; 39(12):2945-54. PubMed ID: 21863387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An fMRI compatible wrist robotic interface to study brain development in neonates.
    Allievi AG; Melendez-Calderon A; Arichi T; Edwards AD; Burdet E
    Ann Biomed Eng; 2013 Jun; 41(6):1181-92. PubMed ID: 23475437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmented manipulation ability in humans with six-fingered hands.
    Mehring C; Akselrod M; Bashford L; Mace M; Choi H; Blüher M; Buschhoff AS; Pistohl T; Salomon R; Cheah A; Blanke O; Serino A; Burdet E
    Nat Commun; 2019 Jun; 10(1):2401. PubMed ID: 31160580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phantom haptic device upgrade for use in fMRI.
    Hribar A; Koritnik B; Munih M
    Med Biol Eng Comput; 2009 Jun; 47(6):677-84. PubMed ID: 19263104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement.
    Muntener M; Patriciu A; Petrisor D; Mazilu D; Bagga H; Kavoussi L; Cleary K; Stoianovici D
    Urology; 2006 Dec; 68(6):1313-7. PubMed ID: 17169653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delineating the whole brain BOLD response to passive movement kinematics.
    Sulzer J; Dueñas J; Stämpili P; Hepp-Reymond MC; Kollias S; Seifritz E; Gassert R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650474. PubMed ID: 24187291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A variable torque motor compatible with magnetic resonance imaging.
    Roeck WW; Ha SH; Farmaka S; Nalcioglu O
    Rev Sci Instrum; 2009 Apr; 80(4):046108. PubMed ID: 19405704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A data glove with tactile feedback for FMRI of virtual reality experiments.
    Ku J; Mraz R; Baker N; Zakzanis KK; Lee JH; Kim IY; Kim SI; Graham SJ
    Cyberpsychol Behav; 2003 Oct; 6(5):497-508. PubMed ID: 14583125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluctuation amplitude and local synchronization of brain activity in the ultra-low frequency band: An fMRI investigation of continuous feedback of finger force.
    Zhang H; Zhang L; Zang Y
    Brain Res; 2015 Dec; 1629():104-12. PubMed ID: 26499258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.