These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28813984)

  • 1. A passive wrist with switchable stiffness for a body-powered hydraulically actuated hand prosthesis.
    Montagnani F; Smit G; Controzzi M; Cipriani C; Plettenburg DH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1197-1202. PubMed ID: 28813984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant Prosthetic Wrists Entail More Natural Use Than Stiff Wrists During Reaching, Not (Necessarily) During Manipulation.
    Kanitz G; Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1407-1413. PubMed ID: 29985150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
    Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a modular and compliant wrist module for upper limb prosthetics.
    Demofonti A; Carpino G; Tagliamonte NL; Baldini G; Bramato L; Zollo L
    Anat Rec (Hoboken); 2023 Apr; 306(4):764-776. PubMed ID: 35362663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study.
    Abd Razak NA; Abu Osman NA; Wan Abas WA
    Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.
    Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK
    J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of passive wrist joints on the functionality of prosthetic hands.
    Kyberd PJ
    Prosthet Orthot Int; 2012 Mar; 36(1):33-8. PubMed ID: 22064262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satisfaction and problems experienced with wrist movements: comparison between a common body-powered prosthesis and a new biomechatronics prosthesis.
    Abd Razak NA; Abu Osman NA; Kamyab M; Wan Abas WA; Gholizadeh H
    Am J Phys Med Rehabil; 2014 May; 93(5):437-44. PubMed ID: 24429510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects.
    Zhu Z; Li J; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():893-904. PubMed ID: 35349446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a multi-DoF transhumeral robotic arm prosthesis.
    Bandara DSV; Gopura RARC; Hemapala KTMU; Kiguchi K
    Med Eng Phys; 2017 Oct; 48():131-141. PubMed ID: 28728864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An In Vitro Hand Simulator for Simultaneous Control of Hand and Wrist Movements.
    Razavian RS; Dreyfuss D; Katakura M; Horwitz MD; Kedgley AE
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):975-982. PubMed ID: 34495828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transradial prostheses: Trends in development of hardware and control systems.
    Semasinghe CL; Madusanka DGK; Ranaweera RKPS; Gopura RARC
    Int J Med Robot; 2019 Feb; 15(1):e1960. PubMed ID: 30248231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographically controlled prosthetic wrist improves dexterity and reduces compensatory movements without added cognitive load.
    Olsen CD; Olsen NR; Stone ES; Tully TN; Paskett MD; Teramoto M; Clark GA; George JA
    Sci Rep; 2024 Oct; 14(1):23248. PubMed ID: 39370497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transradial body-powered prostheses using a robotic simulator.
    Ayub R; Villarreal D; Gregg RD; Gao F
    Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The passive stiffness of the wrist and forearm.
    Formica D; Charles SK; Zollo L; Guglielmelli E; Hogan N; Krebs HI
    J Neurophysiol; 2012 Aug; 108(4):1158-66. PubMed ID: 22649208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study.
    Montagnani F; Controzzi M; Cipriani C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2462-5. PubMed ID: 26736792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.