These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 28813990)
1. A learning-based agent for home neurorehabilitation. Lydakis A; Meng Y; Munroe C; Wu YN; Begum M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990 [TBL] [Abstract][Full Text] [Related]
2. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review. Piggott L; Wagner S; Ziat M Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449 [TBL] [Abstract][Full Text] [Related]
3. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System. Ling Liu ; Xiang Chen ; Zhiyuan Lu ; Shuai Cao ; De Wu ; Xu Zhang IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):244-253. PubMed ID: 28113559 [TBL] [Abstract][Full Text] [Related]
4. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Gassert R; Dietz V J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106 [TBL] [Abstract][Full Text] [Related]
5. The realization of robotic neurorehabilitation in clinical: use of computational intelligence and future prospects analysis. Yang J; Zhao Z; Du C; Wang W; Peng Q; Qiu J; Wang G Expert Rev Med Devices; 2020 Dec; 17(12):1311-1322. PubMed ID: 33252284 [No Abstract] [Full Text] [Related]
6. Virtual Reality for Neurorehabilitation: Insights From 3 European Clinics. O'Neil O; Fernandez MM; Herzog J; Beorchia M; Gower V; Gramatica F; Starrost K; Kiwull L PM R; 2018 Sep; 10(9 Suppl 2):S198-S206. PubMed ID: 30121365 [TBL] [Abstract][Full Text] [Related]
7. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Feys P; Straudi S Mult Scler; 2019 Sep; 25(10):1387-1393. PubMed ID: 31469352 [TBL] [Abstract][Full Text] [Related]
8. Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle Rehabilitation. Covaciu F; Pisla A; Iordan AE Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672161 [TBL] [Abstract][Full Text] [Related]
9. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation. Lledó LD; Badesa FJ; Almonacid M; Cano-Izquierdo JM; Sabater-Navarro JM; Fernández E; Garcia-Aracil N PLoS One; 2015; 10(5):e0127777. PubMed ID: 26001214 [TBL] [Abstract][Full Text] [Related]
10. A Context-Aware Application to Increase Elderly Users Compliance with Physical Rehabilitation Exercises at Home via Animatronic Biofeedback. Gamecho B; Silva H; Guerreiro J; Gardeazabal L; Abascal J J Med Syst; 2015 Nov; 39(11):135. PubMed ID: 26319272 [TBL] [Abstract][Full Text] [Related]
11. Rehab@home: a tool for home-based motor function rehabilitation. Faria C; Silva J; Campilho A Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452 [TBL] [Abstract][Full Text] [Related]
12. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment. Dimbwadyo-Terrer I; Trincado-Alonso F; de Los Reyes-Guzmán A; Aznar MA; Alcubilla C; Pérez-Nombela S; Del Ama-Espinosa A; Polonio-López B; Gil-Agudo Á Disabil Rehabil Assist Technol; 2016 Aug; 11(6):462-7. PubMed ID: 26181226 [TBL] [Abstract][Full Text] [Related]
13. Influence on the user's emotional state of the graphic complexity level in virtual therapies based on a robot-assisted neuro-rehabilitation platform. Villar BF; Viñas PF; Turiel JP; Carlos Fraile Marinero J; Gordaliza A Comput Methods Programs Biomed; 2020 Jul; 190():105359. PubMed ID: 32036205 [TBL] [Abstract][Full Text] [Related]
14. Increasing patient engagement during virtual reality-based motor rehabilitation. Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181 [TBL] [Abstract][Full Text] [Related]
15. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168 [TBL] [Abstract][Full Text] [Related]
16. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721 [TBL] [Abstract][Full Text] [Related]
17. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C; Rusák Z; Horváth I; Ji L Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845 [TBL] [Abstract][Full Text] [Related]
18. New generation emerging technologies for neurorehabilitation and motor assistance. Frisoli A; Solazzi M; Loconsole C; Barsotti M Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314 [TBL] [Abstract][Full Text] [Related]
19. Rehabilitative devices for a top-down approach. Morone G; Spitoni GF; De Bartolo D; Ghanbari Ghooshchy S; Di Iulio F; Paolucci S; Zoccolotti P; Iosa M Expert Rev Med Devices; 2019 Mar; 16(3):187-195. PubMed ID: 30677307 [TBL] [Abstract][Full Text] [Related]
20. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation. Howard A; Brooks D; Brown E; Gebregiorgis A; Chen YP IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650487. PubMed ID: 24187304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]