These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28813990)

  • 21. Humanoid assessing rehabilitative exercises.
    Simonov M; Delconte G
    Methods Inf Med; 2015; 54(2):114-21. PubMed ID: 24986076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement.
    Stanica IC; Moldoveanu F; Portelli GP; Dascalu MI; Moldoveanu A; Ristea MG
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies.
    Sartori M; Llyod DG; Farina D
    IEEE Trans Biomed Eng; 2016 May; 63(5):879-893. PubMed ID: 27046865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.
    Johnson RE; Kording KP; Hargrove LJ; Sensinger JW
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):660-667. PubMed ID: 27576255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated stand-up and sit-down detection for robot-assisted body-weight support training with the FLOAT.
    Bannwart M; Emst D; Easthope C; Bolliger M; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():412-417. PubMed ID: 28813854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Online adaptive assistance control in robot-based neurorehabilitation therapy.
    Stroppa F; Marcheschi S; Mastronicola N; Loconsole C; Frisoli A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():628-633. PubMed ID: 28813890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Barriers to home-based exercise program adherence with chronic low back pain: Patient expectations regarding new technologies.
    Palazzo C; Klinger E; Dorner V; Kadri A; Thierry O; Boumenir Y; Martin W; Poiraudeau S; Ville I
    Ann Phys Rehabil Med; 2016 Apr; 59(2):107-13. PubMed ID: 27050664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auto-adaptive robot-aided therapy using machine learning techniques.
    Badesa FJ; Morales R; Garcia-Aracil N; Sabater JM; Casals A; Zollo L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):123-30. PubMed ID: 24199656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.
    Yin YH; Fan YJ; Xu LD
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):542-9. PubMed ID: 22249763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Rehabilitation Treatment Coach Robot.
    Han SH; Kim HG; Park CY; Choi HJ
    Stud Health Technol Inform; 2017; 245():1226. PubMed ID: 29295313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Making neurorehabilitation fun: Multiplayer training via damping forces balancing differences in skill levels.
    Baur K; Wolf P; Riener R; Duarte JE
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():876-881. PubMed ID: 28813931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities.
    Xiao ZG; Menon C
    J Neuroeng Rehabil; 2014 Jan; 11():2. PubMed ID: 24397984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Framework for User Adaptation and Profiling for Social Robotics in Rehabilitation.
    Martín A; Pulido JC; González JC; García-Olaya Á; Suárez C
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.