These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28814000)

  • 1. Preliminary study of a robotic foot-ankle prosthesis with active alignment.
    LaPre AK; Wedge RD; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1299-1304. PubMed ID: 28814000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preliminary verification of a novel powered ankle-foot prosthesis: From the perspective of lower-limb biomechanics compared with ESAR foot.
    Liu J; Liu J; Cheah PY; Al Kouzbary M; Al Kouzbary H; Yao SX; Shasmin HN; Arifin N; Razak NAA; Abu Osman NA
    PLoS One; 2024; 19(6):e0303397. PubMed ID: 38848334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lightweight robotic ankle prosthesis with non-backdrivable cam-based transmission.
    Lenzi T; Cempini M; Newkirk J; Hargrove LJ; Kuiken TA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1142-1147. PubMed ID: 28813975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
    Sinitski EH; Hansen AH; Wilken JM
    J Biomech; 2012 Feb; 45(3):588-94. PubMed ID: 22177669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps.
    Pickle NT; Silverman AK; Wilken JM; Fey NP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1609-1614. PubMed ID: 28814050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces.
    Schlafly M; Reed KB
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():202-210. PubMed ID: 31991286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Data-Driven and Personalized Stance Symmetry Controller for Robotic Ankle-Foot Prostheses: A Preliminary Investigation.
    Prasanna C; Realmuto J; Anderson A; Rombokas E; Klute G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4051-4062. PubMed ID: 37831558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal ankle-foot prosthesis emulator for human locomotion experiments.
    Caputo JM; Collins SH
    J Biomech Eng; 2014 Mar; 136(3):035002. PubMed ID: 24337103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
    Herr HM; Grabowski AM
    Proc Biol Sci; 2012 Feb; 279(1728):457-64. PubMed ID: 21752817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics.
    Safaeepour Z; Esteki A; Tabatabai Ghomshe F; Mousavai ME
    Prosthet Orthot Int; 2014 Oct; 38(5):400-4. PubMed ID: 24532003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis.
    Martinez-Villalpando EC; Herr H; Farrell M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4687-92. PubMed ID: 18003052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint.
    Tran M; Gabert L; Hood S; Lenzi T
    Sci Robot; 2022 Nov; 7(72):eabo3996. PubMed ID: 36417500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss.
    McDonald KA; Teater RH; Cruz JP; Kerr JT; Bastas G; Zelik KE
    Sci Rep; 2021 Jan; 11(1):1924. PubMed ID: 33479374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformable link segment analysis for prosthetic foot-ankle components: Kinematics.
    Zhao SR; Bryant JT; Li Q
    J Biomech; 2020 Jan; 99():109548. PubMed ID: 31870657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of a powered ankle prosthesis with dynamic joint alignment.
    LaPre AK; Umberger BR; Sup F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1618-21. PubMed ID: 25570282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.