These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28814003)

  • 1. A springs actuated finger exoskeleton: From mechanical design to spring variables evaluation.
    Bortoletto R; Mello AN; Piovesan D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1319-1325. PubMed ID: 28814003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design parameters and torque profile modification of a spring-assisted hand-opening exoskeleton module.
    Butler NR; Goodwin SA; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():591-596. PubMed ID: 28813884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Development of a Portable Exoskeleton for Hand Rehabilitation.
    Wang D; Meng Q; Meng Q; Li X; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2376-2386. PubMed ID: 30387735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and preliminary assessment of Vanderbilt hand exoskeleton.
    Gasser BW; Bennett DA; Durrough CM; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1537-1542. PubMed ID: 28814038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Robotic Bilateral Hand Rehabilitation System for Fine Motor Learning
    Haghshenas-Jaryani M; Pande C; Muthu Wijesundara BJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():337-342. PubMed ID: 31374652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism for elbow exoskeleton for customised training.
    Manna SK; Dubey VN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Testing of a Soft Exoskeleton Robotic Hand Training Device.
    Jackson G; Abdullah HA
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.