These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28814008)

  • 1. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.
    Beil J; Marquardt C; Asfour T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1349-1355. PubMed ID: 28814008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating anatomical wrist joint motion with a robotic exoskeleton.
    Rose CG; Kann CK; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1437-1442. PubMed ID: 28814022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Self-Aligning Four-Finger Exoskeleton for Finger Abduction/Adduction and Flexion/Extension Motion.
    Ge R; Liu Y; Yan Z; Cheng Q; Qiu S; Ming D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abduction/Adduction Assistance From Powered Hip Exoskeleton Enables Modulation of User Step Width During Walking.
    Alili A; Fleming A; Nalam V; Liu M; Dean J; Huang H
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):334-342. PubMed ID: 37540615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.
    Olivier J; Bouri M; Ortlieb A; Bleuler H; Clavel R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650495. PubMed ID: 24187310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator.
    Bessler-Etten J; Schaake L; Prange-Lasonder GB; Buurke JH
    J Neuroeng Rehabil; 2022 Jan; 19(1):13. PubMed ID: 35090501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.