These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28814013)

  • 41. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced visual feedback for slip prevention with a prosthetic hand.
    Engeberg ED; Meek S
    Prosthet Orthot Int; 2012 Dec; 36(4):423-9. PubMed ID: 22402709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses.
    Markovic M; Karnal H; Graimann B; Farina D; Dosen S
    J Neural Eng; 2017 Jun; 14(3):036007. PubMed ID: 28355147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrotactile Feedback with Spatial and Mixed Coding for Object Identification and Closed-loop Control of Grasping Force in Myoelectric Prostheses.
    Chai G; Briand J; Su S; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1805-1808. PubMed ID: 31946247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping.
    Dosen S; Markovic M; Wille N; Henkel M; Koppe M; Ninu A; Frömmel C; Farina D
    Exp Brain Res; 2015 Jun; 233(6):1855-65. PubMed ID: 25804864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design, control, and sensory feedback of externally powered hand prostheses: a literature review.
    Cloutier A; Yang J
    Crit Rev Biomed Eng; 2013; 41(2):161-81. PubMed ID: 24580569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.
    Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J
    Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimating speed-accuracy trade-offs to evaluate and understand closed-loop prosthesis interfaces.
    Mamidanna P; Dideriksen JL; Dosen S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35977526
    [No Abstract]   [Full Text] [Related]  

  • 50. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3D printed prosthetic hand.
    Germany EI; Pino EJ; Aqueveque PE
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5046-5050. PubMed ID: 28269402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Closed-loop control of a prosthetic finger via evoked proprioceptive information.
    Vargas L; Huang HH; Zhu Y; Hu X
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34814128
    [No Abstract]   [Full Text] [Related]  

  • 52. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom.
    Garenfeld MA; Mortensen CK; Strbac M; Dideriksen JL; Dosen S
    J Neural Eng; 2020 Aug; 17(4):046034. PubMed ID: 32650320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering.
    Tura A; Lamberti C; Davalli A; Sacchetti R
    J Rehabil Res Dev; 1998 Jan; 35(1):14-26. PubMed ID: 9505249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. System training and assessment in simultaneous proportional myoelectric prosthesis control.
    Fougner AL; Stavdahl O; Kyberd PJ
    J Neuroeng Rehabil; 2014 Apr; 11():75. PubMed ID: 24775602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic myoelectric hand with voluntary control of finger angle and compliance.
    Okuno R; Akazawa K; Yoshida M
    Front Med Biol Eng; 1999; 9(3):199-210. PubMed ID: 10612560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis and Design of a Bypass Socket for Transradial Amputations.
    Musolf BM; Earley EJ; Munoz-Novoa M; Ortiz-Catalan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4611-4614. PubMed ID: 34892241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of myoelectric prosthesis control strategies and feedback level on adaptation rate for a target acquisition task.
    Shehata AW; Scheme EJ; Sensinger JW
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():200-204. PubMed ID: 28813818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.