These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
784 related articles for article (PubMed ID: 28814014)
1. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
2. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton. Gui K; Liu H; Zhang D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823 [TBL] [Abstract][Full Text] [Related]
3. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
5. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
6. Modeling the Human Gait Phases by Using Bèzier Curves to Generate Walking Trajectories for Lower-Limb Exoskeletons. Zuccatti M; Zinni G; Maludrottu S; Pericu V; Laffranchi M; Del Prete A; De Michieli L; Vassallo C IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941174 [TBL] [Abstract][Full Text] [Related]
7. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation. Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051 [TBL] [Abstract][Full Text] [Related]
8. Template model inspired leg force feedback based control can assist human walking. Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865 [TBL] [Abstract][Full Text] [Related]
9. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons. Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774 [TBL] [Abstract][Full Text] [Related]
10. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design. Anderson A; Richburg C; Czerniecki J; Aubin P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656 [TBL] [Abstract][Full Text] [Related]
11. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
12. Torque-stiffness-controlled dynamic walking with central pattern generators. Huang Y; Vanderborght B; Van Ham R; Wang Q Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320 [TBL] [Abstract][Full Text] [Related]
13. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730 [TBL] [Abstract][Full Text] [Related]
14. Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults. McGibbon CA; Brandon SCE; Brookshaw M; Sexton A Knee; 2017 Oct; 24(5):977-993. PubMed ID: 28760608 [TBL] [Abstract][Full Text] [Related]
15. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton. Zhou X; Chen X J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567 [TBL] [Abstract][Full Text] [Related]
16. Design of a lightweight, tethered, torque-controlled knee exoskeleton. Witte KA; Fatschel AM; Collins SH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056 [TBL] [Abstract][Full Text] [Related]
17. Preliminary Assessment of a Compliant Gait Exoskeleton. Cestari M; Sanz-Merodio D; Garcia E Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern. Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827 [TBL] [Abstract][Full Text] [Related]
19. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
20. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]