These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 28814022)

  • 21. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living.
    Casanova-Batlle E; de Zee M; Thøgersen M; Tillier Y; Andreasen Struijk LNS
    J Biomech; 2022 Jun; 139():111137. PubMed ID: 35594818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A kinematic technique for describing wrist joint motion: analysis of configuration space plots.
    Moore JA; Small CF; Bryant JT; Ellis RE; Pichora DR; Hollister AM
    Proc Inst Mech Eng H; 1993; 207(4):211-8. PubMed ID: 7802872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system.
    Zhu M; Sun Z; Chen T; Lee C
    Nat Commun; 2021 May; 12(1):2692. PubMed ID: 33976216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.
    Keller U; Schölch S; Albisser U; Rudhe C; Curt A; Riener R; Klamroth-Marganska V
    PLoS One; 2015; 10(5):e0126948. PubMed ID: 25996374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.
    Pezent E; Rose CG; Deshpande AD; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A robot-aided visuomotor wrist training induces gains in proprioceptive and movement accuracy in the contralateral wrist.
    Wang Y; Zhu H; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J
    Sci Rep; 2021 Mar; 11(1):5281. PubMed ID: 33674684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A geometric framework for the estimation of joint stiffness of the human wrist.
    Formica D; Azhar M; Tommasino P; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():151-156. PubMed ID: 31374622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a Self-Aligning Four-Finger Exoskeleton for Finger Abduction/Adduction and Flexion/Extension Motion.
    Ge R; Liu Y; Yan Z; Cheng Q; Qiu S; Ming D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robot-aided developmental assessment of wrist proprioception in children.
    Marini F; Squeri V; Morasso P; Campus C; Konczak J; Masia L
    J Neuroeng Rehabil; 2017 Jan; 14(1):3. PubMed ID: 28069028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.