These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28814024)

  • 1. Feedback control of functional electrical stimulation for arbitrary upper extremity movements.
    Razavian RS; Ghannadi B; McPhee J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1451-1456. PubMed ID: 28814024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper limb functional electrical stimulation devices and their man-machine interfaces.
    Venugopalan L; Taylor PN; Cobb JE; Swain ID
    J Med Eng Technol; 2015; 39(8):471-9. PubMed ID: 26508077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electronic counting arm movement test (eCAM test).
    Bodranghien F; Martin C; Ansay C; Camut S; Busegnies Y; Manto M
    Neurol Res; 2015 Jun; 37(6):461-9. PubMed ID: 25413688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.
    Ambrosini E; Ferrante S; Schauer T; Klauer C; Gaffuri M; Ferrigno G; Pedrocchi A
    J Electromyogr Kinesiol; 2014 Apr; 24(2):307-17. PubMed ID: 24529798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.
    Kutlu M; Freeman CT; Hallewell E; Hughes AM; Laila DS
    Med Eng Phys; 2016 Apr; 38(4):366-79. PubMed ID: 26947097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical effects of combined bilateral arm training with functional electrical stimulation in patients with stroke.
    Wu FC; Lin YT; Kuo TS; Luh JJ; Lai JS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975367. PubMed ID: 22275571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration of complex movement in the paralyzed upper limb.
    Hasse BA; Sheets DEG; Holly NL; Gothard KM; Fuglevand AJ
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728568
    [No Abstract]   [Full Text] [Related]  

  • 15. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the upper extremity using FES for stroke rehabilitation.
    Freeman CT; Hughes AM; Burridge JH; Chappell PH; Lewin PL; Rogers E
    J Biomech Eng; 2009 Mar; 131(3):031011. PubMed ID: 19154070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-based BCI for the linear control of an upper-limb neuroprosthesis.
    Vidaurre C; Klauer C; Schauer T; Ramos-Murguialday A; Müller KR
    Med Eng Phys; 2016 Nov; 38(11):1195-1204. PubMed ID: 27425203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromodulation of effects of upper limb motor function and shoulder range of motion by functional electric stimulation (FES).
    Wang RY
    Acta Neurochir Suppl; 2007; 97(Pt 1):381-5. PubMed ID: 17691400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FES control of isometric forces in the rat hindlimb using many muscles.
    Jarc AM; Berniker M; Tresch MC
    IEEE Trans Biomed Eng; 2013 May; 60(5):1422-30. PubMed ID: 23303688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation.
    Hara Y; Ogawa S; Tsujiuchi K; Muraoka Y
    Disabil Rehabil; 2008; 30(4):296-304. PubMed ID: 17852312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.