These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28814031)

  • 1. Evaluation of walking smoothness using wearable robotic system curara® for spinocerebellar degeneration patients.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1494-1499. PubMed ID: 28814031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait training with a wearable curara® robot for cerebellar ataxia: a single-arm study.
    Matsushima A; Maruyama Y; Mizukami N; Tetsuya M; Hashimoto M; Yoshida K
    Biomed Eng Online; 2021 Sep; 20(1):90. PubMed ID: 34496863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients.
    Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Soft Wearable Robotic Suit for Ankle and Hip Assistance: a Preliminary Study.
    Jin S; Guo S; Hashimoto K; Xiong X; Yamamoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1867-1870. PubMed ID: 30440760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating wearable multimodal sensor insoles for motion-pattern measurements in stroke rehabilitation - A pilot study.
    David V; Forjan M; Martinek J; Kotzian S; Jagos H; Rafolt D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1543-1548. PubMed ID: 28814039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6.
    Hickey A; Gunn E; Alcock L; Del Din S; Godfrey A; Rochester L; Galna B
    Physiol Meas; 2016 Nov; 37(11):N105-N117. PubMed ID: 27779133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effectiveness of an active strap for wearable robot: A Mechanical and Physiological Study.
    Lee S; In H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking down a solution: exploring the acceptability and value of wearable GPS devices for older persons, individuals with a disability and their support persons.
    Williamson B; Aplin T; de Jonge D; Goyne M
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):822-831. PubMed ID: 28100086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural gait event-based level walking assistance with a robotic hip exoskeleton.
    Jang J; Lee J; Lim B; Shim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-5. PubMed ID: 30440293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Biofeedback System to Induce Desired Walking Speed in Overground Gait Training.
    Zhang H; Yin Y; Chen Z; Zhang Y; Rao AK; Guo Y; Zanotto D
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age- and speed-related differences in harmonic ratios during walking.
    Lowry KA; Lokenvitz N; Smiley-Oyen AL
    Gait Posture; 2012 Feb; 35(2):272-6. PubMed ID: 22041097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation.
    Zhu Y; Nakamura M; Horiuchi T; Kohno H; Takahashi R; Terada H; Haro H
    Proc Inst Mech Eng H; 2013 Jul; 227(7):733-45. PubMed ID: 23636753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of gait ataxia by accelerometers.
    Shirai S; Yabe I; Matsushima M; Ito YM; Yoneyama M; Sasaki H
    J Neurol Sci; 2015 Nov; 358(1-2):253-8. PubMed ID: 26362336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton.
    Moon DH; Kim D; Hong YD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.