These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28814038)

  • 21. Bimanual training after stroke: are two hands better than one?
    Rose DK; Winstein CJ
    Top Stroke Rehabil; 2004; 11(4):20-30. PubMed ID: 15592987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studying the implementation of iterative impedance control for assistive hand rehabilitation using an exoskeleton.
    Martineau T; Vaidyanathan R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1500-1505. PubMed ID: 28814032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
    Sandison M; Phan K; Casas R; Nguyen L; Lum M; Pergami-Peries M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4867-4872. PubMed ID: 33019080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethical considerations in providing an upper limb exoskeleton device for stroke patients.
    Bulboacă AE; Bolboacă SD; Bulboacă AC
    Med Hypotheses; 2017 Apr; 101():61-64. PubMed ID: 28351495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restoring Voluntary Bimanual Activities of Patients with Chronic Hemiparesis through a Foot-Controlled Hand/Forearm Exoskeleton.
    Chen W; Li G; Li N; Wang W; Yu P; Wang R; Xue X; Zhao X; Liu L
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and experimental testing of a force-augmenting exoskeleton for the human hand.
    Triolo ER; BuSha BF
    J Neuroeng Rehabil; 2022 Feb; 19(1):23. PubMed ID: 35189922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying nonuse in chronic stroke patients: a study into paretic, nonparetic, and bimanual upper-limb use in daily life.
    Michielsen ME; Selles RW; Stam HJ; Ribbers GM; Bussmann JB
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1975-81. PubMed ID: 22465403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and development of a hand robotic rehabilitation device for post stroke patients.
    Rashedi E; Mirbagheri A; Taheri B; Farahmand F; Vossoughi GR; Parnianpour M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5026-9. PubMed ID: 19964660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study.
    Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A
    Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton.
    Li G; Fang Q; Xu T; Zhao J; Cai H; Zhu Y
    Technol Health Care; 2019; 27(S1):123-132. PubMed ID: 31045532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Development of a Portable Exoskeleton for Hand Rehabilitation.
    Wang D; Meng Q; Meng Q; Li X; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2376-2386. PubMed ID: 30387735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise.
    Seo NJ; Rymer WZ; Kamper DG
    J Neurophysiol; 2009 Jun; 101(6):3108-15. PubMed ID: 19357330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in bimanual coordination during the first 6 weeks after moderate hemiparetic stroke.
    Metrot J; Mottet D; Hauret I; van Dokkum L; Bonnin-Koang HY; Torre K; Laffont I
    Neurorehabil Neural Repair; 2013; 27(3):251-9. PubMed ID: 23135767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Home-Based Therapy After Stroke Using the Hand Spring Operated Movement Enhancer (HandSOME).
    Chen J; Nichols D; Brokaw EB; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2305-2312. PubMed ID: 28436882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.