These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28814045)
1. Across-user adaptation for a powered lower limb prosthesis. Spanias JA; Simon AM; Hargrove LJ IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1580-1583. PubMed ID: 28814045 [TBL] [Abstract][Full Text] [Related]
2. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis. Spanias JA; Simon AM; Perreault EJ; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5083-5086. PubMed ID: 28269411 [TBL] [Abstract][Full Text] [Related]
3. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
4. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
6. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes. Simon AM; Fey NP; Finucane SB; Lipschutz RD; Hargrove LJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650371. PubMed ID: 24187190 [TBL] [Abstract][Full Text] [Related]
7. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis. Woodward RB; Spanias JA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033 [TBL] [Abstract][Full Text] [Related]
8. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
9. Online adaptive neural control of a robotic lower limb prosthesis. Spanias JA; Simon AM; Finucane SB; Perreault EJ; Hargrove LJ J Neural Eng; 2018 Feb; 15(1):016015. PubMed ID: 29019467 [TBL] [Abstract][Full Text] [Related]
10. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
11. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis. Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980 [TBL] [Abstract][Full Text] [Related]
12. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis. Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876 [TBL] [Abstract][Full Text] [Related]
13. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. Simon AM; Ingraham KA; Fey NP; Finucane SB; Lipschutz RD; Young AJ; Hargrove LJ PLoS One; 2014; 9(6):e99387. PubMed ID: 24914674 [TBL] [Abstract][Full Text] [Related]
14. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing. Massalin Y; Abdrakhmanova M; Varol HA IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950 [TBL] [Abstract][Full Text] [Related]
15. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
16. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
17. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
18. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. Zhang F; Liu M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499 [TBL] [Abstract][Full Text] [Related]
19. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314 [TBL] [Abstract][Full Text] [Related]
20. Ground adaptive standing controller for a powered transfemoral prosthesis. Lawson BE; Varol HA; Goldfarb M IEEE Int Conf Rehabil Robot; 2011; 2011():5975475. PubMed ID: 22275673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]