These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28814048)

  • 21. Design and control of system for elbow rehabilitation: Preliminary findings.
    Mikołajczyk T; Kłodowski A; Mikołajewska E; Walkowiak P; Berjano P; Villafañe JH; Aggogeri F; Borboni A; Fausti D; Petrogalli G
    Adv Clin Exp Med; 2018 Dec; 27(12):1661-1669. PubMed ID: 30311751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design parameters and torque profile modification of a spring-assisted hand-opening exoskeleton module.
    Butler NR; Goodwin SA; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():591-596. PubMed ID: 28813884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethical considerations in providing an upper limb exoskeleton device for stroke patients.
    Bulboacă AE; Bolboacă SD; Bulboacă AC
    Med Hypotheses; 2017 Apr; 101():61-64. PubMed ID: 28351495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation.
    Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benefits of Using a Voice and EMG-Driven Actuated Glove to Support Occupational Therapy for Stroke Survivors.
    Thielbar KO; Triandafilou KM; Fischer HC; O'Toole JM; Corrigan ML; Ochoa JM; Stoykov ME; Kamper DG
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):297-305. PubMed ID: 27214905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modular one-to-many clutchable actuator for a soft elbow exosuit.
    Canesi M; Xiloyannis M; Ajoudani A; Biechi A; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1679-1685. PubMed ID: 28814061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study.
    Dudley DR; Knarr BA; Siu KC; Peck J; Ricks B; Zuniga JM
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):209-213. PubMed ID: 31385727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upper limb training/assessment program using passive force controllable rehabilitation system.
    Kikuchi T; Sato C; Yamabe K; Abe I; Ohno T; Kugimiya S; Inoue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():505-510. PubMed ID: 28813870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases.
    Nef T; Quinter G; Müller R; Riener R
    Neurodegener Dis; 2009; 6(5-6):240-51. PubMed ID: 19940461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.