These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28814051)

  • 1. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A force augmenting exoskeleton for the human hand designed for pinching and grasping.
    Triolo ER; Stella MH; BuSha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1875-1878. PubMed ID: 30440762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
    Sandison M; Phan K; Casas R; Nguyen L; Lum M; Pergami-Peries M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4867-4872. PubMed ID: 33019080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical Test of a Wearable, High DOF, Spring Powered Hand Exoskeleton (HandSOME II).
    Casas R; Sandison M; Chen T; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1877-1885. PubMed ID: 34478375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A springs actuated finger exoskeleton: From mechanical design to spring variables evaluation.
    Bortoletto R; Mello AN; Piovesan D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1319-1325. PubMed ID: 28814003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft pneumatic actuators for pushing fingers into extension.
    McCall JV; Buckner GD; Kamper DG
    J Neuroeng Rehabil; 2024 Aug; 21(1):146. PubMed ID: 39210475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Self-Aligning Four-Finger Exoskeleton for Finger Abduction/Adduction and Flexion/Extension Motion.
    Ge R; Liu Y; Yan Z; Cheng Q; Qiu S; Ming D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Variable Stiffness Compliant Finger Exoskeleton for Rehabilitation Based on Electromagnet Control.
    Liang R; Xu G; Li M; Zhang S; Luo A; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3926-3929. PubMed ID: 30441219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic finger extension mechanism for soft wearable hand rehabilitation devices.
    Kim DH; Heo SH; Park HS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1326-1330. PubMed ID: 28814004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities.
    Bützer T; Lambercy O; Arata J; Gassert R
    Soft Robot; 2021 Apr; 8(2):128-143. PubMed ID: 32552422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tracking device for a wearable high-DOF passive hand exoskeleton.
    Casas R; Martin K; Sandison M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6643-6646. PubMed ID: 34892631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.