These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28814054)

  • 21. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system.
    Zhu M; Sun Z; Chen T; Lee C
    Nat Commun; 2021 May; 12(1):2692. PubMed ID: 33976216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Hybrid FES-Force Controller for Arm Exosuit.
    Burchielli D; Lotti N; Missiroli F; Bokranz C; Pedrocchi A; Ambrosini E; Masia L
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modular one-to-many clutchable actuator for a soft elbow exosuit.
    Canesi M; Xiloyannis M; Ajoudani A; Biechi A; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1679-1685. PubMed ID: 28814061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.
    O'Neill CT; Phipps NS; Cappello L; Paganoni S; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1672-1678. PubMed ID: 28814060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft, Lightweight Wearable Robots to Support the Upper Limb in Activities of Daily Living: A Feasibility Study on Chronic Stroke Patients.
    Noronha B; Ng CY; Little K; Xiloyannis M; Kuah CWK; Wee SK; Kulkarni SR; Masia L; Chua KSG; Accoto D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1401-1411. PubMed ID: 35576429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and pilot validation of A-gear: a novel wearable dynamic arm support.
    Kooren PN; Dunning AG; Janssen MM; Lobo-Prat J; Koopman BF; Paalman MI; de Groot IJ; Herder JL
    J Neuroeng Rehabil; 2015 Sep; 12():83. PubMed ID: 26385658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a wearable interface for lightweight robotic arm for people with mobility impairments.
    Baldi TL; Spagnoletti G; Dragusanu M; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1567-1573. PubMed ID: 28814043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit.
    Missiroli F; Lotti N; Xiloyannis M; Sloot LH; Riener R; Masia L
    Front Robot AI; 2020; 7():595844. PubMed ID: 33501357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A force-based human machine interface to drive a motorized upper limb exoskeleton. a pilot study.
    Gandolla M; Luciani B; Pirovano DE; Pedrocchi A; Braghin F
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabric muscle with a cooling acceleration structure for upper limb assistance soft exosuits.
    Park SJ; Choi K; Rodrigue H; Park CH
    Sci Rep; 2022 Jul; 12(1):11398. PubMed ID: 35794180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
    Riani A; Madani T; Hadri AE; Benallegue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Variable Stiffness Compliant Finger Exoskeleton for Rehabilitation Based on Electromagnet Control.
    Liang R; Xu G; Li M; Zhang S; Luo A; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3926-3929. PubMed ID: 30441219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MotorSkins-a bio-inspired design approach towards an interactive soft-robotic exosuit.
    Gutierrez F; Razghandi K
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34530414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. User-Centered Configuration of Soft Hip Flexion Exosuit Designs to Assist Individuals with Multiple Sclerosis Through Simulated Human-in-the-Loop Optimization.
    Neuman RM; Fey NP
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research progress on compliant characteristics of lower extremity exoskeleton robots].
    Si G; Huang W; Li G; Xu F; Chu M; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):157-163. PubMed ID: 30887791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New generation emerging technologies for neurorehabilitation and motor assistance.
    Frisoli A; Solazzi M; Loconsole C; Barsotti M
    Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.