These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28814054)

  • 41. Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton.
    Dittli J; Vasileiou C; Asanovski H; Lieber J; Lin JB; Meyer-Heim A; Van Hedel HJA; Gassert R; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176168
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-Cost Force Sensors Embedded in Physical Human-Machine Interfaces: Concept, Exemplary Realization on Upper-Body Exoskeleton, and Validation.
    Hoffmann N; Ersoysal S; Prokop G; Hoefer M; Weidner R
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062475
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study.
    Al-Halimi RK; Moussa M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):686-693. PubMed ID: 28113593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke.
    Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manipulating device-to-body forces in passive exosuit: An experimental investigation on the effect of moment arm orientation using passive back-assist exosuit emulator.
    Bhardwaj S; Shinde AB; Singh R; Vashista V
    Wearable Technol; 2023; 4():e17. PubMed ID: 38487771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities.
    Maheu V; Frappier J; Archambault PS; Routhier F
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975397. PubMed ID: 22275600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A hinge-free, non-restrictive, lightweight tethered exosuit for knee extension assistance during walking.
    Park EJ; Akbas T; Eckert-Erdheim A; Sloot LH; Nuckols RW; Orzel D; Schumm L; Ellis TD; Awad LN; Walsh CJ
    IEEE Trans Med Robot Bionics; 2020; 2(2):165-175. PubMed ID: 33748694
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soft Robotics to Enhance Upper Limb Endurance in Individuals with Multiple Sclerosis.
    Lotti N; Missiroli F; Galofaro E; Tricomi E; Di Domenico D; Semprini M; Casadio M; Brichetto G; De Michieli L; Tacchino A; Masia L
    Soft Robot; 2024 Apr; 11(2):338-346. PubMed ID: 37870773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upper limb training/assessment program using passive force controllable rehabilitation system.
    Kikuchi T; Sato C; Yamabe K; Abe I; Ohno T; Kugimiya S; Inoue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():505-510. PubMed ID: 28813870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and preliminary evaluation of a multi-robotic system with pelvic and hip assistance for pediatric gait rehabilitation.
    Park EJ; Kang J; Su H; Stegall P; Miranda DL; Hsu WH; Karabas M; Phipps N; Agrawal SK; Goldfield EC; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():332-339. PubMed ID: 28813841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
    Brookes J; Kuznecovs M; Kanakis M; Grigals A; Narvidas M; Gallagher J; Levesley M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():676-681. PubMed ID: 28813898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.
    Cortés C; de Los Reyes-Guzmán A; Scorza D; Bertelsen Á; Carrasco E; Gil-Agudo Á; Ruiz-Salguero O; Flórez J
    Biomed Res Int; 2016; 2016():2581924. PubMed ID: 27403420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved Assistive Profile Tracking of Exosuit by Considering Adaptive Stiffness Model and Body Movement.
    Kim J; Nam K; Yang S; Moon J; Yang J; Ryu J; Lee G
    Soft Robot; 2024 Sep; ():. PubMed ID: 39347613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit.
    Xiloyannis M; Annese E; Canesi M; Kodiyan A; Bicchi A; Micera S; Ajoudani A; Masia L
    Front Neurorobot; 2019; 13():39. PubMed ID: 31275129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterizing the comfort limits of forces applied to the shoulders, thigh and shank to inform exosuit design.
    Yandell MB; Ziemnicki DM; McDonald KA; Zelik KE
    PLoS One; 2020; 15(2):e0228536. PubMed ID: 32049971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lighter and Simpler Design Paradigm for Widespread Use of Ankle Exosuits Based on Bio-Inspired Patterns.
    Park S; Moon J; Park JI; Ryu J; Nam K; Yang J; Lee G
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease.
    Haumont T; Rahman T; Sample W; M King M; Church C; Henley J; Jayakumar S
    J Pediatr Orthop; 2011; 31(5):e44-9. PubMed ID: 21654447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation.
    Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms.
    Soltani-Zarrin R; Zeiaee A; Langari R; Robson N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():753-758. PubMed ID: 28813910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.