These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 28814056)
1. Design of a lightweight, tethered, torque-controlled knee exoskeleton. Witte KA; Fatschel AM; Collins SH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056 [TBL] [Abstract][Full Text] [Related]
2. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
4. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle. Ashkani O; Maleki A; Jamshidi N Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688 [TBL] [Abstract][Full Text] [Related]
5. Design and Evaluation of a Knee Flexion Assistance Exoskeleton for People with Transtibial Amputation. Anderson AJ; Hudak YF; Gauthier KA; Muir BC; Aubin PM IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176102 [TBL] [Abstract][Full Text] [Related]
6. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator. Bessler-Etten J; Schaake L; Prange-Lasonder GB; Buurke JH J Neuroeng Rehabil; 2022 Jan; 19(1):13. PubMed ID: 35090501 [TBL] [Abstract][Full Text] [Related]
8. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints. McGrath RL; Sergi F IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740 [TBL] [Abstract][Full Text] [Related]
9. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance. Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses. Kang HC; Lee JH; Kim SM Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067 [TBL] [Abstract][Full Text] [Related]
11. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations. Mosconi D; Moreno Y; Siqueira A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262 [TBL] [Abstract][Full Text] [Related]
12. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646 [TBL] [Abstract][Full Text] [Related]
13. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton. Wang J; Fei Y; Chen W Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736 [TBL] [Abstract][Full Text] [Related]
14. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait. Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200 [TBL] [Abstract][Full Text] [Related]
15. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control. Chen J; Damiano DL; Lerner ZF; Bulea TC IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725 [TBL] [Abstract][Full Text] [Related]
16. Preliminary Assessment of a Compliant Gait Exoskeleton. Cestari M; Sanz-Merodio D; Garcia E Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092 [TBL] [Abstract][Full Text] [Related]
17. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential. Chen T; Casas R; Lum PS IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766 [TBL] [Abstract][Full Text] [Related]
18. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
19. Development of an unpowered ankle exoskeleton for walking assist. Leclair J; Pardoel S; Helal A; Doumit M Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353 [No Abstract] [Full Text] [Related]
20. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. Bianco NA; Collins SH; Liu K; Delp SL PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]