BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28814149)

  • 1. N
    Cao Y; Li D; Zhao M; Gong H; Wan R; Gu H
    Nanomedicine (Lond); 2017 Sep; 12(18):2245-2255. PubMed ID: 28814149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cell growth on 3D graphene scaffolds implanted with nitrogen ions.
    Zhao M; Cao Y; Gong H; Sun Y; Deng J; Li D; Wan R; Gu H
    Biointerphases; 2018 May; 13(4):041001. PubMed ID: 29768924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.
    Waiwijit U; Maturos T; Pakapongpan S; Phokharatkul D; Wisitsoraat A; Tuantranont A
    J Biomater Appl; 2016 Aug; 31(2):230-40. PubMed ID: 27358375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH₂ ion implantation.
    Guo M; Li M; Liu X; Zhao M; Li D; Geng D; Sun X; Gu H
    J Mater Sci Mater Med; 2013 Dec; 24(12):2741-8. PubMed ID: 23907737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation.
    Loeblein M; Perry G; Tsang SH; Xiao W; Collard D; Coquet P; Sakai Y; Teo EH
    Adv Healthc Mater; 2016 May; 5(10):1177-91. PubMed ID: 26946189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional macroporous graphene scaffolds for tissue engineering.
    Lalwani G; D'agati M; Gopalan A; Rao M; Schneller J; Sitharaman B
    J Biomed Mater Res A; 2017 Jan; 105(1):73-83. PubMed ID: 27529473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of interaction of L-929 cells with functionalized graphene via COOH
    Zhao ML; Liu XQ; Cao Y; Li XF; Li DJ; Sun XL; Gu HQ; Wan RX
    Sci Rep; 2016 Nov; 6():37112. PubMed ID: 27845420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering.
    Xie X; Hu K; Fang D; Shang L; Tran SD; Cerruti M
    Nanoscale; 2015 May; 7(17):7992-8002. PubMed ID: 25864935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering.
    Dinescu S; Ionita M; Pandele AM; Galateanu B; Iovu H; Ardelean A; Costache M; Hermenean A
    Biomed Mater Eng; 2014; 24(6):2249-56. PubMed ID: 25226924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-Control of Three-Dimensional Self-Assembly Graphene by Hydrothermal Reaction Time and Its Biological Application.
    Gong H; Zhao M; Li D; Wan R; Gu H
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5756-5762. PubMed ID: 29458636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications.
    Solìs Moré Y; Panella G; Fioravanti G; Perrozzi F; Passacantando M; Giansanti F; Ardini M; Ottaviano L; Cimini A; Peniche C; Ippoliti R
    J Biomed Mater Res A; 2018 Jun; 106(6):1585-1594. PubMed ID: 29424473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.
    Aznar-Cervantes S; Martínez JG; Bernabeu-Esclapez A; Lozano-Pérez AA; Meseguer-Olmo L; Otero TF; Cenis JL
    Bioelectrochemistry; 2016 Apr; 108():36-45. PubMed ID: 26717014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation.
    Tian Z; Huang L; Pei X; Chen J; Wang T; Yang T; Qin H; Sui L; Wang J
    Colloids Surf B Biointerfaces; 2017 Jul; 155():150-158. PubMed ID: 28419944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of topography on tissue engineering perspective.
    Mansouri N; SamiraBagheri
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():906-21. PubMed ID: 26838922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact.
    Schmitt C; Rasch F; Cossais F; Held-Feindt J; Lucius R; Vázquez AR; Nia AS; Lohe MR; Feng X; Mishra YK; Adelung R; Schütt F; Hattermann K
    Biomed Mater; 2020 Dec; 16(1):015008. PubMed ID: 32688352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.