BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28814752)

  • 1. Oncofetal HMGA2 effectively curbs unconstrained (+) and (-) DNA supercoiling.
    Zhao X; Peter S; Dröge P; Yan J
    Sci Rep; 2017 Aug; 7(1):8440. PubMed ID: 28814752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Assembly of High-Mobility Group AT-Hook 2 Protein with DNA Replication Fork.
    Krahn N; Meier M; To V; Booy EP; McEleney K; O'Neil JD; McKenna SA; Patel TR; Stetefeld J
    Biophys J; 2017 Dec; 113(12):2609-2620. PubMed ID: 29262356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chromatin structuring protein HMGA2 influences human subtelomere stability and cancer chemosensitivity.
    Ahmed SM; Ramani PD; Wong SQR; Zhao X; Ivanyi-Nagy R; Leong TC; Chua C; Li Z; Hentze H; Tan IB; Yan J; DasGupta R; Dröge P
    PLoS One; 2019; 14(5):e0215696. PubMed ID: 31067275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells.
    Yu H; Lim HH; Tjokro NO; Sathiyanathan P; Natarajan S; Chew TW; Klonisch T; Goodman SD; Surana U; Dröge P
    Cell Rep; 2014 Feb; 6(4):684-97. PubMed ID: 24508460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncofetal HMGA2 attenuates genotoxic damage induced by topoisomerase II target compounds through the regulation of local DNA topology.
    Ahmed SM; Dröge P
    Mol Oncol; 2019 Oct; 13(10):2062-2078. PubMed ID: 31271486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes.
    Sheflin LG; Fucile NW; Spaulding SW
    Biochemistry; 1993 Apr; 32(13):3238-48. PubMed ID: 8461290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks.
    McClendon AK; Rodriguez AC; Osheroff N
    J Biol Chem; 2005 Nov; 280(47):39337-45. PubMed ID: 16188892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of binding the mammalian high mobility group protein HMGA2 to poly(dA-dT)2 and poly(dA)-poly(dT).
    Cui T; Wei S; Brew K; Leng F
    J Mol Biol; 2005 Sep; 352(3):629-45. PubMed ID: 16109425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks.
    Jones JM; Nakai H
    J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence.
    Vlijm R; Mashaghi A; Bernard S; Modesti M; Dekker C
    Nanoscale; 2015 Feb; 7(7):3205-16. PubMed ID: 25615283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knot what we thought before: the twisted story of replication.
    Postow L; Peter BJ; Cozzarelli NR
    Bioessays; 1999 Oct; 21(10):805-8. PubMed ID: 10497329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA bending by the mammalian high-mobility group protein AT hook 2.
    Chen B; Young J; Leng F
    Biochemistry; 2010 Mar; 49(8):1590-5. PubMed ID: 20108983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topoisomerase V relaxes supercoiled DNA by a constrained swiveling mechanism.
    Taneja B; Schnurr B; Slesarev A; Marko JF; Mondragón A
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14670-5. PubMed ID: 17804808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FGFR inhibitor PD173074 binds to the C-terminus of oncofetal HMGA2 and modulates its DNA-binding and transcriptional activation functions.
    Ahmed SM; Ragunathan P; Shin J; Peter S; Kleissle S; Neuenschwander M; Schäfer R; Kries JPV; Grüber G; Dröge P
    FEBS Lett; 2023 Aug; 597(15):1977-1988. PubMed ID: 37259564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes.
    Schvartzman JB; Hernández P; Krimer DB; Dorier J; Stasiak A
    Nucleic Acids Res; 2019 Aug; 47(14):7182-7198. PubMed ID: 31276584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological challenges to DNA replication: conformations at the fork.
    Postow L; Crisona NJ; Peter BJ; Hardy CD; Cozzarelli NR
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8219-26. PubMed ID: 11459956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physcomitrella HMGA-type proteins display structural differences compared to their higher plant counterparts.
    Lyngaard C; Stemmer C; Stensballe A; Graf M; Gorr G; Decker E; Grasser KD
    Biochem Biophys Res Commun; 2008 Oct; 374(4):653-7. PubMed ID: 18662672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication.
    Ahmed SM; Dröge P
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32599919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets.
    Jagelská EB; Pivonková H; Fojta M; Brázda V
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1409-14. PubMed ID: 20026061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I.
    Tan K; Zhou Q; Cheng B; Zhang Z; Joachimiak A; Tse-Dinh YC
    Nucleic Acids Res; 2015 Dec; 43(22):11031-46. PubMed ID: 26490962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.