BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28814752)

  • 21. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA.
    Slocum SL; Buss JA; Kimura Y; Bianco PR
    J Mol Biol; 2007 Mar; 367(3):647-64. PubMed ID: 17292398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dissection of the architectural transcription factor HMGA2.
    Noro B; Licheri B; Sgarra R; Rustighi A; Tessari MA; Chau KY; Ono SJ; Giancotti V; Manfioletti G
    Biochemistry; 2003 Apr; 42(15):4569-77. PubMed ID: 12693954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal.
    Kile AC; Chavez DA; Bacal J; Eldirany S; Korzhnev DM; Bezsonova I; Eichman BF; Cimprich KA
    Mol Cell; 2015 Jun; 58(6):1090-100. PubMed ID: 26051180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding the mammalian high mobility group protein AT-hook 2 to AT-rich deoxyoligonucleotides: enthalpy-entropy compensation.
    Joynt S; Morillo V; Leng F
    Biophys J; 2009 May; 96(10):4144-52. PubMed ID: 19450485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast dynamics of supercoiled DNA revealed by single-molecule experiments.
    Crut A; Koster DA; Seidel R; Wiggins CH; Dekker NH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):11957-62. PubMed ID: 17623785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids.
    Chasovskikh S; Dimtchev A; Smulson M; Dritschilo A
    Cytometry A; 2005 Nov; 68(1):21-7. PubMed ID: 16200639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2): Biochemical and Biophysical Properties, and Its Association with Adipogenesis.
    Su L; Deng Z; Leng F
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32466162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High Mobility Group A2 protects cancer cells against telomere dysfunction.
    Natarajan S; Begum F; Gim J; Wark L; Henderson D; Davie JR; Hombach-Klonisch S; Klonisch T
    Oncotarget; 2016 Mar; 7(11):12761-82. PubMed ID: 26799419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interplay of supercoiling and thymine dimers in DNA.
    Lim W; Randisi F; Doye JPK; Louis AA
    Nucleic Acids Res; 2022 Mar; 50(5):2480-2492. PubMed ID: 35188542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA.
    Noy A; Maxwell A; Harris SA
    Biophys J; 2017 Feb; 112(3):523-531. PubMed ID: 28108011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry-Mass Spectrometry.
    Jeanne Dit Fouque K; Sipe SN; Garabedian A; Mejia G; Su L; Hossen ML; Chapagain PP; Leng F; Brodbelt JS; Fernandez-Lima F
    J Am Soc Mass Spectrom; 2022 Jul; 33(7):1103-1112. PubMed ID: 35687119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning the genes and DNA binding properties of High Mobility Group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum.
    de Oliveira FM; de Abreu da Silva IC; Rumjanek FD; Dias-Neto E; Guimarães PE; Verjovski-Almeida S; Stros M; Fantappié MR
    Gene; 2006 Aug; 377():33-45. PubMed ID: 16644144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plectoneme tip bubbles: coupled denaturation and writhing in supercoiled DNA.
    Matek C; Ouldridge TE; Doye JP; Louis AA
    Sci Rep; 2015 Jan; 5():7655. PubMed ID: 25563652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y.
    Nissen MS; Reeves R
    J Biol Chem; 1995 Mar; 270(9):4355-60. PubMed ID: 7876198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P; Bickle TA
    J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing hyper-negatively supercoiled mini-circles with nucleases and DNA binding proteins.
    Saintomé C; Delagoutte E
    PLoS One; 2018; 13(8):e0202138. PubMed ID: 30114256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of DNA binding and localized strand separation by Pur alpha and comparison with Pur family member, Pur beta.
    Wortman MJ; Johnson EM; Bergemann AD
    Biochim Biophys Acta; 2005 Mar; 1743(1-2):64-78. PubMed ID: 15777841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 A resolution crystal structure reveals a novel alpha-helical two-domain fold.
    Mueser TC; Jones CE; Nossal NG; Hyde CC
    J Mol Biol; 2000 Feb; 296(2):597-612. PubMed ID: 10669611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.