BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28814814)

  • 1. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy.
    Nagaishi K; Mizue Y; Chikenji T; Otani M; Nakano M; Saijo Y; Tsuchida H; Ishioka S; Nishikawa A; Saito T; Fujimiya M
    Sci Rep; 2017 Aug; 7(1):8484. PubMed ID: 28814814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Umbilical cord extracts improve osteoporotic abnormalities of bone marrow-derived mesenchymal stem cells and promote their therapeutic effects on ovariectomised rats.
    Saito A; Nagaishi K; Iba K; Mizue Y; Chikenji T; Otani M; Nakano M; Oyama K; Yamashita T; Fujimiya M
    Sci Rep; 2018 Jan; 8(1):1161. PubMed ID: 29348535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.
    Nagaishi K; Mizue Y; Chikenji T; Otani M; Nakano M; Konari N; Fujimiya M
    Sci Rep; 2016 Oct; 6():34842. PubMed ID: 27721418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.
    Drela K; Lech W; Figiel-Dabrowska A; Zychowicz M; Mikula M; Sarnowska A; Domanska-Janik K
    Cytotherapy; 2016 Apr; 18(4):497-509. PubMed ID: 26971678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation.
    Karnieli O; Izhar-Prato Y; Bulvik S; Efrat S
    Stem Cells; 2007 Nov; 25(11):2837-44. PubMed ID: 17615265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes.
    Zhang W; Ling Q; Wang B; Wang K; Pang J; Lu J; Bi Y; Zhu D
    Stem Cell Res Ther; 2022 Aug; 13(1):406. PubMed ID: 35941696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord.
    Manochantr S; U-pratya Y; Kheolamai P; Rojphisan S; Chayosumrit M; Tantrawatpan C; Supokawej A; Issaragrisil S
    Intern Med J; 2013 Apr; 43(4):430-9. PubMed ID: 23176558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of morphology, protein concentration, and size distribution of bone marrow and Wharton's jelly-derived mesenchymal stem cells exosomes isolated by ultracentrifugation and polymer-based precipitation techniques.
    Rahmatinejad F; Kharat Z; Jalili H; Renani MK; Mobasheri H
    Tissue Cell; 2024 Jun; 88():102427. PubMed ID: 38833940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Nephrocyte Injury and Proteinuria in a Diabetic Nephropathy Rat Model.
    Chen L; Xiang E; Li C; Han B; Zhang Q; Rao W; Xiao C; Wu D
    J Diabetes Res; 2020; 2020():8035853. PubMed ID: 32405507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone-marrow mesenchymal stem cell transplantation to treat diabetic nephropathy in tree shrews.
    Pan XH; Yang XY; Yao X; Sun XM; Zhu L; Wang JX; Pang RQ; Cai XM; Dai JJ; Ruan GP
    Cell Biochem Funct; 2014 Jul; 32(5):453-63. PubMed ID: 24867093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells.
    Balasubramanian S; Venugopal P; Sundarraj S; Zakaria Z; Majumdar AS; Ta M
    Cytotherapy; 2012 Jan; 14(1):26-33. PubMed ID: 22091833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.
    Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C
    Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats.
    Hao H; Liu J; Shen J; Zhao Y; Liu H; Hou Q; Tong C; Ti D; Dong L; Cheng Y; Mu Y; Liu J; Fu X; Han W
    Biochem Biophys Res Commun; 2013 Jul; 436(3):418-23. PubMed ID: 23770360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells.
    Datta I; Mishra S; Mohanty L; Pulikkot S; Joshi PG
    Cytotherapy; 2011 Sep; 13(8):918-32. PubMed ID: 21696238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells.
    Kubota K; Nakano M; Kobayashi E; Mizue Y; Chikenji T; Otani M; Nagaishi K; Fujimiya M
    PLoS One; 2018; 13(9):e0204252. PubMed ID: 30240403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes.
    Nakano M; Nagaishi K; Konari N; Saito Y; Chikenji T; Mizue Y; Fujimiya M
    Sci Rep; 2016 Apr; 6():24805. PubMed ID: 27102354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice.
    Ezquer FE; Ezquer ME; Parrau DB; Carpio D; Yañez AJ; Conget PA
    Biol Blood Marrow Transplant; 2008 Jun; 14(6):631-40. PubMed ID: 18489988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application.
    Cabrera-Pérez R; Monguió-Tortajada M; Gámez-Valero A; Rojas-Márquez R; Borràs FE; Roura S; Vives J
    Stem Cell Res Ther; 2019 Nov; 10(1):356. PubMed ID: 31779673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of vascular complications of diabetes mellitus on human umbilical cord tissue and the number of Wharton Jelly's mesenchymal stem cells.
    Karaca C; Bostancıeri N; Ovayolu A; Kahraman DT
    Mol Biol Rep; 2020 Dec; 47(12):9313-9323. PubMed ID: 33179142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy.
    Wang Y; Shan SK; Guo B; Li F; Zheng MH; Lei LM; Xu QS; Ullah MHE; Xu F; Lin X; Yuan LQ
    Front Endocrinol (Lausanne); 2021; 12():671566. PubMed ID: 34163437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.