These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28814973)

  • 1. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of
    Löwe H; Hobmeier K; Moos M; Kremling A; Pflüger-Grau K
    Biotechnol Biofuels; 2017; 10():190. PubMed ID: 28814973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nitrate-Blind
    Hobmeier K; Löwe H; Liefeldt S; Kremling A; Pflüger-Grau K
    Front Bioeng Biotechnol; 2020; 8():486. PubMed ID: 32523942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO
    Kratzl F; Kremling A; Pflüger-Grau K
    Eng Life Sci; 2023 Jan; 23(1):e2100156. PubMed ID: 36619884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium
    Zhang L; Chen L; Diao J; Song X; Shi M; Zhang W
    Biotechnol Biofuels; 2020; 13():82. PubMed ID: 32391082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida.
    Fedeson DT; Saake P; Calero P; Nikel PI; Ducat DC
    Microb Biotechnol; 2020 Jul; 13(4):997-1011. PubMed ID: 32064751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates.
    Mezzina MP; Manoli MT; Prieto MA; Nikel PI
    Biotechnol J; 2021 Mar; 16(3):e2000165. PubMed ID: 33085217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production.
    Weiss TL; Young EJ; Ducat DC
    Metab Eng; 2017 Nov; 44():236-245. PubMed ID: 29061492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis.
    Wang B; Zuniga C; Guarnieri MT; Zengler K; Betenbaugh M; Young JD
    Metab Eng; 2023 Nov; 80():12-24. PubMed ID: 37678664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach.
    Kratzl F; Urban M; Pandhal J; Shi M; Meng C; Kleigrewe K; Kremling A; Pflüger-Grau K
    Commun Biol; 2024 Apr; 7(1):452. PubMed ID: 38609451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Syntrophic Consortium of Engineered Synechococcus elongatus and Pseudomonas putida.
    Lin TY; Wen RC; Shen CR; Tsai SL
    Biotechnol J; 2020 Jun; 15(6):e1900357. PubMed ID: 32181597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.
    Nikodinovic J; Kenny ST; Babu RP; Woods T; Blau WJ; O'Connor KE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):665-73. PubMed ID: 18629491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation.
    Manoli MT; Gargantilla-Becerra Á; Del Cerro Sánchez C; Rivero-Buceta V; Prieto MA; Nogales J
    Cell Rep; 2024 Apr; 43(4):113979. PubMed ID: 38517887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an artificial consortium of
    Cui Y; Rasul F; Jiang Y; Zhong Y; Zhang S; Boruta T; Riaz S; Daroch M
    Front Microbiol; 2022; 13():965968. PubMed ID: 36338098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of irradiance and inorganic carbon availability on heterologous sucrose production in
    Yun L; Zegarac R; Ducat DC
    Front Plant Sci; 2024; 15():1378573. PubMed ID: 38650707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.
    Song K; Tan X; Liang Y; Lu X
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7865-75. PubMed ID: 27079574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942.
    Qiao C; Duan Y; Zhang M; Hagemann M; Luo Q; Lu X
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cyanobacteria for converting carbon dioxide into isomaltulose.
    Wu Y; Sun J; Xu X; Mao S; Luan G; Lu X
    J Biotechnol; 2023 Feb; 364():1-4. PubMed ID: 36702257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.