These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28815010)

  • 1. Development and characterisation of a low-concentration sodium dodecyl sulphate decellularised porcine dermis.
    Helliwell JA; Thomas DS; Papathanasiou V; Homer-Vanniasinkam S; Desai A; Jennings LM; Rooney P; Kearney JN; Ingham E
    J Tissue Eng; 2017; 8():2041731417724011. PubMed ID: 28815010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves.
    Holland JDR; Webster G; Rooney P; Wilshaw SP; Jennings LM; Berry HE
    Front Bioeng Biotechnol; 2021; 9():660453. PubMed ID: 34150728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a decellularised dermis.
    Hogg P; Rooney P; Ingham E; Kearney JN
    Cell Tissue Bank; 2013 Sep; 14(3):465-74. PubMed ID: 22875198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterisation of a large diameter decellularised vascular allograft.
    Aldridge A; Desai A; Owston H; Jennings LM; Fisher J; Rooney P; Kearney JN; Ingham E; Wilshaw SP
    Cell Tissue Bank; 2018 Sep; 19(3):287-300. PubMed ID: 29188402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of decellularisation on the real time mechanical fatigue of porcine aortic heart valve roots.
    Desai A; Ingham E; Berry HE; Fisher J; Jennings LM
    PLoS One; 2022; 17(4):e0265763. PubMed ID: 35363787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a terminally sterilised decellularised dermis.
    Hogg P; Rooney P; Leow-Dyke S; Brown C; Ingham E; Kearney JN
    Cell Tissue Bank; 2015 Sep; 16(3):351-9. PubMed ID: 25341645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decellularisation and histological characterisation of porcine peripheral nerves.
    Zilic L; Wilshaw SP; Haycock JW
    Biotechnol Bioeng; 2016 Sep; 113(9):2041-53. PubMed ID: 26926914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of native and decellularised porcine tendon under tension and compression: A closer look at glycosaminoglycan contribution to tendon mechanics.
    Solis-Cordova J; Edwards JH; Fermor HL; Riches P; Brockett CL; Herbert A
    J Mech Behav Biomed Mater; 2023 Mar; 139():105671. PubMed ID: 36682172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering small-diameter vascular grafts: preparation of a biocompatible porcine ureteric scaffold.
    Derham C; Yow H; Ingram J; Fisher J; Ingham E; Korrosis SA; Homer-Vanniasinkam S
    Tissue Eng Part A; 2008 Nov; 14(11):1871-82. PubMed ID: 18950273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots.
    Desai A; Vafaee T; Rooney P; Kearney JN; Berry HE; Ingham E; Fisher J; Jennings LM
    J Mech Behav Biomed Mater; 2018 Mar; 79():53-63. PubMed ID: 29274525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering.
    Bolland F; Korossis S; Wilshaw SP; Ingham E; Fisher J; Kearney JN; Southgate J
    Biomaterials; 2007 Feb; 28(6):1061-70. PubMed ID: 17092557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a sterilised decellularised tendon allograft for clinical use.
    Huang Q; Ingham E; Rooney P; Kearney JN
    Cell Tissue Bank; 2013 Dec; 14(4):645-54. PubMed ID: 23443409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications.
    Greco KV; Francis L; Somasundaram M; Greco G; English NR; Roether JA; Boccaccini AR; Sibbons P; Ansari T
    J Biomater Appl; 2015 Aug; 30(2):239-53. PubMed ID: 25855682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Automatic Decellularisation of Porcine Aortae: A Repeatability Study Using a Non-Enzymatic Approach.
    O'Connor Mooney R; Davis NF; Hoey D; Hogan L; McGloughlin TM; Walsh MT
    Cells Tissues Organs; 2016; 201(4):299-318. PubMed ID: 27144773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decellularised human bone allograft from different anatomical sites as a basis for functionally stratified repair material for bone defects.
    Norbertczak HT; Fermor HL; Edwards JH; Rooney P; Ingham E; Herbert A
    J Mech Behav Biomed Mater; 2022 Jan; 125():104965. PubMed ID: 34808451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decellularization and Characterization of Porcine Superflexor Tendon: A Potential Anterior Cruciate Ligament Replacement.
    Jones G; Herbert A; Berry H; Edwards JH; Fisher J; Ingham E
    Tissue Eng Part A; 2017 Feb; 23(3-4):124-134. PubMed ID: 27806678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarchitectural analysis of decellularised unscarred and scarred dermis provides insight into the organisation and ultrastructure of the human skin with implications for future dermal substitute scaffold design.
    Khan U; Bayat A
    J Tissue Eng; 2019; 10():2041731419843710. PubMed ID: 31244988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus.
    Abdelgaied A; Stanley M; Galfe M; Berry H; Ingham E; Fisher J
    J Biomech; 2015 Jun; 48(8):1389-96. PubMed ID: 25766391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.
    Fermor HL; Russell SL; Williams S; Fisher J; Ingham E
    J Mater Sci Mater Med; 2015 May; 26(5):186. PubMed ID: 25893393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells.
    Figueiredo GS; Bojic S; Rooney P; Wilshaw SP; Connon CJ; Gouveia RM; Paterson C; Lepert G; Mudhar HS; Figueiredo FC; Lako M
    Acta Biomater; 2017 Oct; 61():124-133. PubMed ID: 28760619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.