BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28815491)

  • 1. Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes.
    Pritchard CEJ; Kroese LJ; Huijbers IJ
    Methods Mol Biol; 2017; 1642():21-35. PubMed ID: 28815491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins.
    Quadros RM; Miura H; Harms DW; Akatsuka H; Sato T; Aida T; Redder R; Richardson GP; Inagaki Y; Sakai D; Buckley SM; Seshacharyulu P; Batra SK; Behlke MA; Zeiner SA; Jacobi AM; Izu Y; Thoreson WB; Urness LD; Mansour SL; Ohtsuka M; Gurumurthy CB
    Genome Biol; 2017 May; 18(1):92. PubMed ID: 28511701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Cre Knockin Rat Lines Using CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    Methods Mol Biol; 2017; 1642():37-52. PubMed ID: 28815492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating Genetically Modified Mice: A Decision Guide.
    Huijbers IJ
    Methods Mol Biol; 2017; 1642():1-19. PubMed ID: 28815490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.
    Bishop KA; Harrington A; Kouranova E; Weinstein EJ; Rosen CJ; Cui X; Liaw L
    G3 (Bethesda); 2016 Jul; 6(7):2051-61. PubMed ID: 27175020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene editing in mouse zygotes using the CRISPR/Cas9 system.
    Wefers B; Bashir S; Rossius J; Wurst W; Kühn R
    Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control.
    Mianné J; Codner GF; Caulder A; Fell R; Hutchison M; King R; Stewart ME; Wells S; Teboul L
    Methods; 2017 May; 121-122():68-76. PubMed ID: 28363792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.
    Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA
    Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote.
    Raveux A; Vandormael-Pournin S; Cohen-Tannoudji M
    Sci Rep; 2017 Feb; 7():42661. PubMed ID: 28209967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes.
    Tröder SE; Ebert LK; Butt L; Assenmacher S; Schermer B; Zevnik B
    PLoS One; 2018; 13(5):e0196891. PubMed ID: 29723268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
    Paix A; Folkmann A; Seydoux G
    Methods; 2017 May; 121-122():86-93. PubMed ID: 28392263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector,
    Li M; Bui M; Yang T; Bowman CS; White BJ; Akbari OS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):E10540-E10549. PubMed ID: 29138316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional Control of CRISPR/Cas9 Function.
    Zhou W; Deiters A
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5394-9. PubMed ID: 26996256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a conditional Nomo1 mouse model by CRISPR/Cas9 technology.
    García-Tuñón I; Vuelta E; Lozano L; Herrero M; Méndez L; Palomero-Hernandez J; Pérez-Caro M; Pérez-García J; González-Sarmiento R; Sánchez-Martín M
    Mol Biol Rep; 2020 Feb; 47(2):1381-1391. PubMed ID: 31833031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease.
    Qin W; Dion SL; Kutny PM; Zhang Y; Cheng AW; Jillette NL; Malhotra A; Geurts AM; Chen YG; Wang H
    Genetics; 2015 Jun; 200(2):423-30. PubMed ID: 25819794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroporation of AsCpf1/RNP at the Zygote Stage is an Efficient Genome Editing Method to Generate Knock-Out Mice Deficient in Leukemia Inhibitory Factor.
    Kim YS; Kim GR; Park M; Yang SC; Park SH; Won JE; Lee JH; Shin HE; Song H; Kim HR
    Tissue Eng Regen Med; 2020 Feb; 17(1):45-53. PubMed ID: 32002841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.