BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28815507)

  • 1. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways.
    Liu W; Tuck LR; Wright JM; Cai Y
    Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family.
    Olorunniji FJ; Merrick C; Rosser SJ; Smith MCM; Stark WM; Colloms SD
    Methods Mol Biol; 2017; 1642():303-323. PubMed ID: 28815508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stringent control of FLP recombinase in Escherichia coli.
    Bowden SD; Palani NP; Libourel IGL
    J Microbiol Methods; 2017 Feb; 133():52-54. PubMed ID: 28024983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Minicircle DNA Vectors Using Site-Specific Recombinases.
    Ata-Abadi NS; Rezaei N; Dormiani K; Nasr-Esfahani MH
    Methods Mol Biol; 2017; 1642():325-339. PubMed ID: 28815509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.
    Karimova M; Splith V; Karpinski J; Pisabarro MT; Buchholz F
    Sci Rep; 2016 Jul; 6():30130. PubMed ID: 27444945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases.
    Voziyanova E; Anderson RP; Voziyanov Y
    Methods Mol Biol; 2017; 1642():53-67. PubMed ID: 28815493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*.
    Warth L; Haug I; Altenbuchner J
    Arch Microbiol; 2011 Mar; 193(3):187-200. PubMed ID: 21165603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recombineering pipeline to make conditional targeting constructs.
    Fu J; Teucher M; Anastassiadis K; Skarnes W; Stewart AF
    Methods Enzymol; 2010; 477():125-44. PubMed ID: 20699140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice.
    Anastassiadis K; Fu J; Patsch C; Hu S; Weidlich S; Duerschke K; Buchholz F; Edenhofer F; Stewart AF
    Dis Model Mech; 2009; 2(9-10):508-15. PubMed ID: 19692579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).
    Merrick CA; Wardrope C; Paget JE; Colloms SD; Rosser SJ
    Methods Enzymol; 2016; 575():285-317. PubMed ID: 27417934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric recombinases with designed DNA sequence recognition.
    Akopian A; He J; Boocock MR; Stark WM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8688-91. PubMed ID: 12837939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xer-mediated site-specific recombination in vitro.
    Colloms SD; McCulloch R; Grant K; Neilson L; Sherratt DJ
    EMBO J; 1996 Mar; 15(5):1172-81. PubMed ID: 8605888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter.
    Cao Y; Xian M
    Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae.
    Sauer B
    Mol Cell Biol; 1987 Jun; 7(6):2087-96. PubMed ID: 3037344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinase-mediated cassette exchange (RMCE) and BAC engineering via VCre/VloxP and SCre/SloxP systems.
    Minorikawa S; Nakayama M
    Biotechniques; 2011 Apr; 50(4):235-46. PubMed ID: 21548907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific bacterial chromosome engineering mediated by IntA integrase from Rhizobium etli.
    Hernández-Tamayo R; Torres-Tejerizo G; Brom S; Romero D
    BMC Microbiol; 2016 Jun; 16(1):133. PubMed ID: 27357704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex iterative plasmid engineering for combinatorial optimization of metabolic pathways and diversification of protein coding sequences.
    Li Y; Gu Q; Lin Z; Wang Z; Chen T; Zhao X
    ACS Synth Biol; 2013 Nov; 2(11):651-61. PubMed ID: 24041030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro DNA SCRaMbLE.
    Wu Y; Zhu RY; Mitchell LA; Ma L; Liu R; Zhao M; Jia B; Xu H; Li YX; Yang ZM; Ma Y; Li X; Liu H; Liu D; Xiao WH; Zhou X; Li BZ; Yuan YJ; Boeke JD
    Nat Commun; 2018 May; 9(1):1935. PubMed ID: 29789594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli.
    Agaphonov MO
    FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies.
    Chuang K; Nguyen E; Sergeev Y; Badea TC
    G3 (Bethesda); 2015 Dec; 6(3):559-71. PubMed ID: 26715092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.