These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28815507)

  • 41. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.
    Colloms SD; Merrick CA; Olorunniji FJ; Stark WM; Smith MC; Osbourn A; Keasling JD; Rosser SJ
    Nucleic Acids Res; 2014 Feb; 42(4):e23. PubMed ID: 24225316
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of a new minicircle DNA carrying an enhanced green florescent protein reporter gene for efficient expression into mammalian cell lines.
    Sanei Ata-Abadi N; Dormiani K; Khazaie Y; Ghaedi K; Forouzanfar M; Lachinani L; Rezaei N; Kiani-Esfahani A; Nasr-Esfahani MH
    Mol Biol Rep; 2015 Jul; 42(7):1175-85. PubMed ID: 25736052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS).
    Santoro SW; Schultz PG
    Methods Mol Biol; 2003; 230():291-312. PubMed ID: 12824591
    [No Abstract]   [Full Text] [Related]  

  • 44. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene.
    Agaphonov M; Alexandrov A
    FEMS Yeast Res; 2014 Nov; 14(7):1048-54. PubMed ID: 25124534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries.
    Shen J; Chen J; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4737-4746. PubMed ID: 28361238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites.
    Bolusani S; Ma CH; Paek A; Konieczka JH; Jayaram M; Voziyanov Y
    Nucleic Acids Res; 2006; 34(18):5259-69. PubMed ID: 17003057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recycling selectable markers in yeast.
    Sauer B
    Biotechniques; 1994 Jun; 16(6):1086-8. PubMed ID: 8074874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.
    Xu P; Vansiri A; Bhan N; Koffas MA
    ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol.
    Rodrigues AL; Becker J; de Souza Lima AO; Porto LM; Wittmann C
    Biotechnol Bioeng; 2014 Nov; 111(11):2280-9. PubMed ID: 24889673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution.
    Tian X; Zhou B
    J Biol Chem; 2021; 296():100509. PubMed ID: 33676891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Osmoregulation of dimer resolution at the plasmid pJHCMW1 mwr locus by Escherichia coli XerCD recombination.
    Pham H; Dery KJ; Sherratt DJ; Tolmasky ME
    J Bacteriol; 2002 Mar; 184(6):1607-16. PubMed ID: 11872712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Overview of Tyrosine Site-specific Recombination: From an Flp Perspective.
    Jayaram M; Ma CH; Kachroo AH; Rowley PA; Guga P; Fan HF; Voziyanov Y
    Microbiol Spectr; 2015 Aug; 3(4):. PubMed ID: 26350308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Directed Evolution of Targeted Recombinases for Genome Engineering.
    Sirk SJ
    Methods Mol Biol; 2018; 1867():89-102. PubMed ID: 30155817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.
    Lee H; Kim BG; Kim M; Ahn JH
    J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus.
    Lansing F; Paszkowski-Rogacz M; Schmitt LT; Schneider PM; Rojo Romanos T; Sonntag J; Buchholz F
    Nucleic Acids Res; 2020 Jan; 48(1):472-485. PubMed ID: 31745551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli.
    Zhang C; Seow VY; Chen X; Too HP
    Nat Commun; 2018 May; 9(1):1858. PubMed ID: 29752432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One step DNA assembly for combinatorial metabolic engineering.
    Coussement P; Maertens J; Beauprez J; Van Bellegem W; De Mey M
    Metab Eng; 2014 May; 23():70-7. PubMed ID: 24594279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-specific recombinases: molecular machines for the Genetic Revolution.
    Olorunniji FJ; Rosser SJ; Stark WM
    Biochem J; 2016 Mar; 473(6):673-84. PubMed ID: 26965385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.