These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 28815507)

  • 61. Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies.
    Liu K; Jin H; Zhou B
    J Biol Chem; 2020 May; 295(19):6413-6424. PubMed ID: 32213599
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Growth-coupled selection of synthetic modules to accelerate cell factory development.
    Orsi E; Claassens NJ; Nikel PI; Lindner SN
    Nat Commun; 2021 Sep; 12(1):5295. PubMed ID: 34489458
    [TBL] [Abstract][Full Text] [Related]  

  • 63. VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering.
    Suzuki E; Nakayama M
    Nucleic Acids Res; 2011 Apr; 39(8):e49. PubMed ID: 21288882
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Parallel Integration and Chromosomal Expansion of Metabolic Pathways.
    Goyal G; Costello Z; Alonso-Gutierrez J; Kang A; Lee TS; Garcia Martin H; Hillson NJ
    ACS Synth Biol; 2018 Nov; 7(11):2566-2576. PubMed ID: 30351913
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway.
    Xie SS; Qiu XY; Zhu LY; Zhu CS; Liu CY; Wu XM; Zhu L; Zhang DY
    J Biotechnol; 2019 Apr; 296():69-74. PubMed ID: 30885657
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Start-Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering.
    Taylor GM; Mordaka PM; Heap JT
    Nucleic Acids Res; 2019 Feb; 47(3):e17. PubMed ID: 30462270
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pairing of single mutations yields obligate Cre-type site-specific recombinases.
    Hoersten J; Ruiz-Gómez G; Lansing F; Rojo-Romanos T; Schmitt LT; Sonntag J; Pisabarro MT; Buchholz F
    Nucleic Acids Res; 2022 Jan; 50(2):1174-1186. PubMed ID: 34951450
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method.
    Zou R; Zhou K; Stephanopoulos G; Too HP
    PLoS One; 2013; 8(11):e79557. PubMed ID: 24223968
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spanning high-dimensional expression space using ribosome-binding site combinatorics.
    Zelcbuch L; Antonovsky N; Bar-Even A; Levin-Karp A; Barenholz U; Dayagi M; Liebermeister W; Flamholz A; Noor E; Amram S; Brandis A; Bareia T; Yofe I; Jubran H; Milo R
    Nucleic Acids Res; 2013 May; 41(9):e98. PubMed ID: 23470993
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expanding the scope of site-specific recombinases for genetic and metabolic engineering.
    Gaj T; Sirk SJ; Barbas CF
    Biotechnol Bioeng; 2014 Jan; 111(1):1-15. PubMed ID: 23982993
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor.
    Zhou H; Vonk B; Roubos JA; Bovenberg RA; Voigt CA
    Nucleic Acids Res; 2015 Dec; 43(21):10560-70. PubMed ID: 26519464
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Switching on lineage tracers using site-specific recombination.
    Dymecki SM; Rodriguez CI; Awatramani RB
    Methods Mol Biol; 2002; 185():309-34. PubMed ID: 11768998
    [No Abstract]   [Full Text] [Related]  

  • 73. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.
    Jeschek M; Gerngross D; Panke S
    Nat Commun; 2016 Mar; 7():11163. PubMed ID: 27029461
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.
    McNerney MP; Styczynski MP
    Metab Eng; 2017 Sep; 43(Pt A):46-53. PubMed ID: 28826810
    [TBL] [Abstract][Full Text] [Related]  

  • 75. T7 RNA polymerase-driven inducible cell lysis for DNA transfer from Escherichia coli to Bacillus subtilis.
    Juhas M; Ajioka JW
    Microb Biotechnol; 2017 Nov; 10(6):1797-1808. PubMed ID: 28815907
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nearest-neighbor amino acids of specificity-determining residues influence the activity of engineered Cre-type recombinases.
    Soni A; Augsburg M; Buchholz F; Pisabarro MT
    Sci Rep; 2020 Aug; 10(1):13985. PubMed ID: 32814809
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways.
    Liu W; Tuck LR; Wright JM; Cai Y
    Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family.
    Olorunniji FJ; Merrick C; Rosser SJ; Smith MCM; Stark WM; Colloms SD
    Methods Mol Biol; 2017; 1642():303-323. PubMed ID: 28815508
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stringent control of FLP recombinase in Escherichia coli.
    Bowden SD; Palani NP; Libourel IGL
    J Microbiol Methods; 2017 Feb; 133():52-54. PubMed ID: 28024983
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.