These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28815567)

  • 1. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes).
    Bars-Closel M; Kohlsdorf T; Moen DS; Wiens JJ
    Evolution; 2017 Sep; 71(9):2243-2261. PubMed ID: 28815567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.
    Moen DS; Wiens JJ
    Am Nat; 2017 Jul; 190(1):29-44. PubMed ID: 28617640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary diversification of clades of squamate reptiles.
    Ricklefs RE; Losos JB; Townsend TM
    J Evol Biol; 2007 Sep; 20(5):1751-62. PubMed ID: 17714293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining large-scale patterns of vertebrate diversity.
    Wiens JJ
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26202428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic niche divergence drives patterns of diversification and richness among mammal families.
    Castro-Insua A; Gómez-Rodríguez C; Wiens JJ; Baselga A
    Sci Rep; 2018 Jun; 8(1):8781. PubMed ID: 29884843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families.
    Streicher JW; Wiens JJ
    Biol Lett; 2017 Sep; 13(9):. PubMed ID: 28904179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the Relationships between Diversification, Species Richness, and Trait Evolution.
    Kozak KH; Wiens JJ
    Syst Biol; 2016 Nov; 65(6):975-988. PubMed ID: 27048703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
    Vidal N; Hedges SB
    C R Biol; 2005; 328(10-11):1000-8. PubMed ID: 16286089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species.
    Wiens JJ; Hutter CR; Mulcahy DG; Noonan BP; Townsend TM; Sites JW; Reeder TW
    Biol Lett; 2012 Dec; 8(6):1043-6. PubMed ID: 22993238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphological diversity of the quadrate bone in squamate reptiles as revealed by high-resolution computed tomography and geometric morphometrics.
    Palci A; Caldwell MW; Hutchinson MN; Konishi T; Lee MSY
    J Anat; 2020 Feb; 236(2):210-227. PubMed ID: 31667837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular evolutionary tree of lizards, snakes, and amphisbaenians.
    Vidal N; Hedges SB
    C R Biol; 2009; 332(2-3):129-39. PubMed ID: 19281946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes).
    Jezkova T; Wiens JJ
    Mol Ecol; 2018 Jun; 27(12):2754-2769. PubMed ID: 29779234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological factors and parity mode correlate with genome size variation in squamate reptiles.
    Saha A; Bellucci A; Fratini S; Cannicci S; Ciofi C; Iannucci A
    BMC Ecol Evol; 2023 Dec; 23(1):69. PubMed ID: 38053023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroevolutionary diversification of glands for chemical communication in squamate reptiles.
    García-Roa R; Jara M; Baeckens S; López P; Van Damme R; Martín J; Pincheira-Donoso D
    Sci Rep; 2017 Aug; 7(1):9288. PubMed ID: 28839252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species.
    Zheng Y; Wiens JJ
    Mol Phylogenet Evol; 2016 Jan; 94(Pt B):537-547. PubMed ID: 26475614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analysis of reptilian hemoglobins: trees, rates, and divergences.
    Gorr TA; Mable BK; Kleinschmidt T
    J Mol Evol; 1998 Oct; 47(4):471-85. PubMed ID: 9767692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do Macrophylogenies Yield Stable Macroevolutionary Inferences? An Example from Squamate Reptiles.
    Title PO; Rabosky DL
    Syst Biol; 2017 Sep; 66(5):843-856. PubMed ID: 27821703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time Explains Regional Richness Patterns within Clades More Often than Diversification Rates or Area.
    Li H; Wiens JJ
    Am Nat; 2019 Apr; 193(4):514-529. PubMed ID: 30912972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree.
    Townsend T; Larson A; Louis E; Macey JR
    Syst Biol; 2004 Oct; 53(5):735-57. PubMed ID: 15545252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.