These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2881576)

  • 41. Exchange and hydrolysis of tightly bound nucleotides in normal and photolabelled bovine heart mitochondrial F1-ATPase.
    van Dongen MB; Berden JA
    Biochim Biophys Acta; 1987 Aug; 893(1):22-32. PubMed ID: 2886151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of adenine nucleotides with multiple binding sites on beef heart mitochondrial adenosine triphosphatase.
    Garrett NE; Penefsky HS
    J Biol Chem; 1975 Sep; 250(17):6640-7. PubMed ID: 125756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Delta subunit of rat liver mitochondrial ATP synthase: molecular description and novel insights into the nature of its association with the F1-moiety.
    Pan W; Ko YH; Pedersen PL
    Biochemistry; 1998 May; 37(19):6911-23. PubMed ID: 9578578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalytic properties of the Escherichia coli proton adenosinetriphosphatase: evidence that nucleotide bound at noncatalytic sites is not involved in regulation of oxidative phosphorylation.
    Wise JG; Senior AE
    Biochemistry; 1985 Nov; 24(24):6949-54. PubMed ID: 2866799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural rearrangements in soluble mitochondrial ATPase.
    Chernyak BV; Chernyak VY; Gladysheva TB; Kozhanova ZE; Kozlov IA
    Biochim Biophys Acta; 1981 May; 635(3):552-70. PubMed ID: 6453613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of ATP hydrolase activity of the F0-F1 complex of rat-liver mitochondria during early hepatic regeneration.
    Buckle M
    FEBS Lett; 1986 Dec; 209(2):197-202. PubMed ID: 2878827
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction of cardiac myosin with a purine disulfide analog of adenosine triphosphate. I. Kinetics of inactivation and binding of adenylyl imidodiphosphate.
    Greene LE; Yount RG
    J Biol Chem; 1977 Mar; 252(5):1673-80. PubMed ID: 138683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and properties of the F1-ATPase from liver mitochondria of Gallus gallus.
    Lo Piero AR; Petrone G
    Comp Biochem Physiol B; 1992 Sep; 103(1):235-8. PubMed ID: 1451435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of depletion of nucleotide and of delta and epsilon subunits on ATP synthesis in dimethyl sulfoxide by F1-ATPase of Escherichia coli.
    Beharry S; Bragg PD
    Biochem Biophys Res Commun; 1993 Jul; 194(1):483-9. PubMed ID: 8333861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluoroaluminum and fluoroberyllium nucleoside diphosphate complexes as probes of the enzymatic mechanism of the mitochondrial F1-ATPase.
    Issartel JP; Dupuis A; Lunardi J; Vignais PV
    Biochemistry; 1991 May; 30(19):4726-33. PubMed ID: 1827593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting precatalytic conformational changes in F1-ATPase with 4-benzoyl(benzoyl)-1-amidofluorescein, a novel fluorescent nucleotide site-specific photoaffinity label.
    Pal PK; Coleman PS
    J Biol Chem; 1990 Sep; 265(25):14996-5002. PubMed ID: 2144281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Escherichia coli F1-ATPase can use GTP-nonchaseable bound adenine nucleotide to synthesize ATP in dimethyl sulfoxide.
    Beharry S; Bragg PD
    Biochemistry; 1992 Nov; 31(46):11472-6. PubMed ID: 1445881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ATP binding causes a conformational change in the gamma subunit of the Escherichia coli F1ATPase which is reversed on bond cleavage.
    Turina P; Capaldi RA
    Biochemistry; 1994 Nov; 33(47):14275-80. PubMed ID: 7947838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamics of active-site ligand binding to Escherichia coli glutamine synthetase.
    Ginsburg A; Gorman EG; Neece SH; Blackburn MB
    Biochemistry; 1987 Sep; 26(19):5989-96. PubMed ID: 2891374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of F1-ATPase from the uncD412 mutant of Escherichia coli.
    Wise JG; Duncan TM; Latchney LR; Cox DN; Senior AE
    Biochem J; 1983 Nov; 215(2):343-50. PubMed ID: 6228224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the epsilon subunit of Escherichia coli ATP synthase.
    Mendel-Hartvig J; Capaldi RA
    Biochemistry; 1991 Nov; 30(45):10987-91. PubMed ID: 1834172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.