These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28815926)

  • 1. Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water.
    Tanabe Y; Arashiba K; Nakajima K; Nishibayashi Y
    Chem Asian J; 2017 Oct; 12(19):2544-2548. PubMed ID: 28815926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Yandulov DV; Schrock RR
    Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia.
    Arashiba K; Miyake Y; Nishibayashi Y
    Nat Chem; 2011 Feb; 3(2):120-5. PubMed ID: 21258384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes.
    Yandulov DV; Schrock RR
    Inorg Chem; 2005 Feb; 44(4):1103-17. PubMed ID: 15859292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and mechanism of a room-temperature catalytic process for ammonia synthesis (Schrock cycle): comparison with biological nitrogen fixation.
    Studt F; Tuczek F
    Angew Chem Int Ed Engl; 2005 Sep; 44(35):5639-42. PubMed ID: 16086351
    [No Abstract]   [Full Text] [Related]  

  • 6. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source.
    Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S
    Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Weare WW; Dai X; Byrnes MJ; Chin JM; Schrock RR; Müller P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17099-106. PubMed ID: 17085586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment.
    Schrock RR
    Angew Chem Int Ed Engl; 2008; 47(30):5512-22. PubMed ID: 18537212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimetallic ruthenium PNP pincer complex as a platform to model proposed intermediates in dinitrogen reduction to ammonia.
    Rozenel SS; Arnold J
    Inorg Chem; 2012 Sep; 51(18):9730-9. PubMed ID: 22924647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand.
    Schenk S; Le Guennic B; Kirchner B; Reiher M
    Inorg Chem; 2008 May; 47(9):3634-50. PubMed ID: 18357978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterolytic outer-sphere cleavage of H2 for the reduction of N2 in the coordination sphere of transition metals--a DFT study.
    Hölscher M; Leitner W
    Angew Chem Int Ed Engl; 2012 Aug; 51(33):8225-9. PubMed ID: 22782940
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Schrock RR
    Acc Chem Res; 2005 Dec; 38(12):955-62. PubMed ID: 16359167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia.
    Tanaka H; Arashiba K; Kuriyama S; Sasada A; Nakajima K; Yoshizawa K; Nishibayashi Y
    Nat Commun; 2014 Apr; 5():3737. PubMed ID: 24769530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator.
    Tanaka H; Nishikawa H; Uchida T; Katsuki T
    J Am Chem Soc; 2010 Sep; 132(34):12034-41. PubMed ID: 20701287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and mechanism of ammonia synthesis through the Chatt Cycle: conditions for a catalytic mode and comparison with the Schrock Cycle.
    Stephan GC; Sivasankar C; Studt F; Tuczek F
    Chemistry; 2008; 14(2):644-52. PubMed ID: 17973285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine.
    Hazari N
    Chem Soc Rev; 2010 Nov; 39(11):4044-56. PubMed ID: 20571678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in reduction of dinitrogen by proton and electron transfer.
    van der Ham CJ; Koper MT; Hetterscheid DG
    Chem Soc Rev; 2014 Aug; 43(15):5183-91. PubMed ID: 24802308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic conversion of nitrogen to ammonia by an iron model complex.
    Anderson JS; Rittle J; Peters JC
    Nature; 2013 Sep; 501(7465):84-7. PubMed ID: 24005414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous electrocatalytic oxidation of ammonia to N
    Habibzadeh F; Miller SL; Hamann TW; Smith MR
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2849-2853. PubMed ID: 30655346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a proximal base on water oxidation and proton reduction catalyzed by geometric isomers of [Ru(tpy)(pynap)(OH2)]2+.
    Boyer JL; Polyansky DE; Szalda DJ; Zong R; Thummel RP; Fujita E
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12600-4. PubMed ID: 22057468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.