BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28815971)

  • 1. Topographical and Electrical Stimulation of Neuronal Cells through Microwrinkled Conducting Polymer Biointerfaces.
    Bonisoli A; Marino A; Ciofani G; Greco F
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28815971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwrinkled conducting polymer interface for anisotropic multicellular alignment.
    Greco F; Fujie T; Ricotti L; Taccola S; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):573-84. PubMed ID: 23273113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Fabrication of Microwrinkled Poly(3,4-Ethylenedioxythiophene) Films that Promote Neural Differentiation under Electrical Stimulation.
    Hsiao YS; Lin CL; Liao IH; Chen FJ; Liu CT; Tseng HS; Yu J
    ACS Appl Bio Mater; 2021 Mar; 4(3):2354-2362. PubMed ID: 35014356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-ordered porous conductive polypyrrole as a new platform for neural interfaces.
    Kang G; Borgens RB; Cho Y
    Langmuir; 2011 May; 27(10):6179-84. PubMed ID: 21500821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces.
    Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D
    Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering.
    Pires F; Ferreira Q; Rodrigues CA; Morgado J; Ferreira FC
    Biochim Biophys Acta; 2015 Jun; 1850(6):1158-68. PubMed ID: 25662071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy of Nanotopography and Electrical Conductivity of PEDOT/PSS for Enhanced Neuronal Development.
    Bianchi M; Guzzo S; Lunghi A; Greco P; Pisciotta A; Murgia M; Carnevale G; Fadiga L; Biscarini F
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59224-59235. PubMed ID: 38091494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.
    Cullen DK; R Patel A; Doorish JF; Smith DH; Pfister BJ
    J Neural Eng; 2008 Dec; 5(4):374-84. PubMed ID: 18827311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing.
    Liu X; Yue Z; Higgins MJ; Wallace GG
    Biomaterials; 2011 Oct; 32(30):7309-17. PubMed ID: 21745688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties.
    Green RA; Lovell NH; Poole-Warren LA
    Acta Biomater; 2010 Jan; 6(1):63-71. PubMed ID: 19563922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth.
    Hardy JG; Khaing ZZ; Xin S; Tien LW; Ghezzi CE; Mouser DJ; Sukhavasi RC; Preda RC; Gil ES; Kaplan DL; Schmidt CE
    J Biomater Sci Polym Ed; 2015; 26(17):1327-42. PubMed ID: 26414407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofunctionalization of PEDOT films with laminin-derived peptides.
    Bhagwat N; Murray RE; Shah SI; Kiick KL; Martin DC
    Acta Biomater; 2016 Sep; 41():235-46. PubMed ID: 27181880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes.
    Baek S; Green RA; Poole-Warren LA
    J Biomed Mater Res A; 2014 Aug; 102(8):2743-54. PubMed ID: 24027227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces.
    Greco F; Zucca A; Taccola S; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9461-9. PubMed ID: 23978229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications.
    Lalegül-Ülker Ö; Elçin AE; Elçin YM
    Adv Exp Med Biol; 2018; 1078():135-153. PubMed ID: 30357622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance.
    Ho D; Zou J; Chen X; Munshi A; Smith NM; Agarwal V; Hodgetts SI; Plant GW; Bakker AJ; Harvey AR; Luzinov I; Iyer KS
    ACS Nano; 2015 Feb; 9(2):1767-74. PubMed ID: 25623615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells.
    Wu Y; Peng Y; Bohra H; Zou J; Ranjan VD; Zhang Y; Zhang Q; Wang M
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4833-4841. PubMed ID: 30624894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative control of neuron adhesion at a neural interface using a conducting polymer composite with low electrical impedance.
    Kim SY; Kim KM; Hoffman-Kim D; Song HK; Palmore GT
    ACS Appl Mater Interfaces; 2011 Jan; 3(1):16-21. PubMed ID: 21142128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.
    Tian L; Prabhakaran MP; Hu J; Chen M; Besenbacher F; Ramakrishna S
    Colloids Surf B Biointerfaces; 2016 Sep; 145():420-429. PubMed ID: 27232305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.