BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 28816042)

  • 1. Rapid and Reliable Detection of Alkaline Phosphatase by a Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle.
    Zeng Y; Ren JQ; Wang SK; Mai JM; Qu B; Zhang Y; Shen AG; Hu JM
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29547-29553. PubMed ID: 28816042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite.
    Chen M; Zhang L; Gao M; Zhang X
    Talanta; 2017 Sep; 172():176-181. PubMed ID: 28602292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs.
    Yaseen T; Pu H; Sun DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products.
    Qi M; Huang X; Zhou Y; Zhang L; Jin Y; Peng Y; Jiang H; Du S
    Food Chem; 2016 Apr; 197(Pt A):723-9. PubMed ID: 26617009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme-induced Au@Ag core-shell nanoStructure used for an ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarkers.
    Yang L; Gao MX; Zhan L; Gong M; Zhen SJ; Huang CZ
    Nanoscale; 2017 Feb; 9(7):2640-2645. PubMed ID: 28155925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoshell-Enhanced Raman Spectroscopy on a Microplate for Staphylococcal Enterotoxin B Sensing.
    Wang W; Wang W; Liu L; Xu L; Kuang H; Zhu J; Xu C
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15591-7. PubMed ID: 27193082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles.
    Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.
    Li A; Tang L; Song D; Song S; Ma W; Xu L; Kuang H; Wu X; Liu L; Chen X; Xu C
    Nanoscale; 2016 Jan; 8(4):1873-8. PubMed ID: 26732202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange.
    Du Y; Liu R; Liu B; Wang S; Han MY; Zhang Z
    Anal Chem; 2013 Mar; 85(6):3160-5. PubMed ID: 23438694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly.
    Qian K; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6449-54. PubMed ID: 22955203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.