BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2881613)

  • 1. Gliogenesis in the embryonic avian optic tectum: neuronal-glial interactions influence astroglial phenotype maturation.
    Linser PJ; Perkins M
    Brain Res; 1987 Feb; 428(2):277-90. PubMed ID: 2881613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple marker analysis in the avian optic tectum reveals three classes of neuroglia and carbonic anhydrase-containing neurons.
    Linser PJ
    J Neurosci; 1985 Sep; 5(9):2388-96. PubMed ID: 2863336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomagnetic removal of neurons from developing chick optic tectum results in glial phenotypic instability.
    Galileo DS; Linser PJ
    Glia; 1992; 5(3):210-22. PubMed ID: 1534068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal gradient of astrocyte development in the chick optic tectum: evidence for multiple origins and migratory paths of astrocytes.
    Seo JH; Chang JH; Song SH; Lee HN; Jeon GS; Kim DW; Chung CK; Cho SS
    Neurochem Res; 2008 Jul; 33(7):1346-55. PubMed ID: 18288610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gliogenesis: the importance of appropriate cell associations.
    Linser PJ
    Prog Clin Biol Res; 1986; 217A():127-30. PubMed ID: 2875462
    [No Abstract]   [Full Text] [Related]  

  • 6. Cell migration along glial fibers in dissociated cell culture of the frog optic tectum.
    Becker T; Becker CG
    Brain Res; 1991 Jul; 553(2):331-5. PubMed ID: 1933292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial cells in the chicken optic tectum.
    Shin DH; Lee E; Cho SS
    Brain Res; 2003 Feb; 962(1-2):221-5. PubMed ID: 12543473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan.
    Arenzana FJ; Santos-Ledo A; Porteros A; Aijón J; Velasco A; Lara JM; Arévalo R
    Int J Dev Neurosci; 2011 Jun; 29(4):441-9. PubMed ID: 21392569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical study of glutamine synthetase expression in early glial development.
    Akimoto J; Itoh H; Miwa T; Ikeda K
    Brain Res Dev Brain Res; 1993 Mar; 72(1):9-14. PubMed ID: 8095865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of glial and neuronal markers in the retina of fish: variable character of horizontal cells.
    Linser PJ; Smith K; Angelides K
    J Comp Neurol; 1985 Jul; 237(2):264-72. PubMed ID: 2863290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental expression of glial fibrillary acidic protein and glutamine synthetase in serum-free aggregating cell cultures of fetal rat telencephalon.
    Monnet-Tschudi F; Eng LF; Matthieu JM; Honegger P
    Dev Neurosci; 1988; 10(3):165-72. PubMed ID: 2903822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenesis, gliogenesis and the developing chicken optic tectum: an immunohistochemical and ultrastructural analysis.
    Lever M; Brand-Saberi B; Theiss C
    Brain Struct Funct; 2014 May; 219(3):1009-24. PubMed ID: 23568458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical demonstration of both carbonic anhydrase isoenzyme II and glial fibrillary acidic protein in some immature rat glial cells in primary culture.
    Langui D; Delaunoy JP; Ghandour MS; Sensenbrenner M
    Neurosci Lett; 1985 Sep; 60(2):151-6. PubMed ID: 3932904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar redistribution of a glial subtype in the chick optic tectum.
    Miskevich F
    Brain Res Dev Brain Res; 1999 Jun; 115(2):103-9. PubMed ID: 10407128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in neuronal and glial cell phenotypic expression in neuron-glia cocultures: influence of glia-conditioned media and living glial cell substrata.
    Lee K; Kentroti S; Vernadakis A
    Brain Res Bull; 1992 Jun; 28(6):861-70. PubMed ID: 1353404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage of radial glia in the chicken optic tectum.
    Gray GE; Sanes JR
    Development; 1992 Jan; 114(1):271-83. PubMed ID: 1576964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunocytochemical and biochemical characterization of glial phenotypes in normal and immortalized cultures derived from 3-day-old chick embryo encephalon.
    Kentroti S; Vernadakis A
    Glia; 1996 Oct; 18(2):79-91. PubMed ID: 8913772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripapillary glial cells in the chick retina: A special glial cell type expressing astrocyte, radial glia, neuron, and oligodendrocyte markers throughout development.
    Quesada A; Prada FA; Aguilera Y; Espinar A; Carmona A; Prada C
    Glia; 2004 May; 46(4):346-55. PubMed ID: 15095365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory aspects of the in vitro development of retinal Müller glial cells.
    Linser PJ; Perkins MS
    Cell Differ; 1987 Mar; 20(2-3):189-96. PubMed ID: 3568138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gliogenesis in organotypic tissue culture of the spinal cord of the embryonic mouse. I. Immunocytochemical and ultrastructural studies.
    Munoz-Garcia D; Ludwin SK
    J Neurocytol; 1986 Jun; 15(3):273-90. PubMed ID: 3528398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.