These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28816179)

  • 1. Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten.
    Wang LF; Shu X; Lu GH; Gao F
    J Phys Condens Matter; 2017 Nov; 29(43):435401. PubMed ID: 28816179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.
    Niu LL; Zhang Y; Shu X; Jin S; Zhou HB; Gao F; Lu GH
    J Phys Condens Matter; 2015 Jul; 27(25):255007. PubMed ID: 26045469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An empirical potential for simulating vacancy clusters in tungsten.
    Mason DR; Nguyen-Manh D; Becquart CS
    J Phys Condens Matter; 2017 Dec; 29(50):505501. PubMed ID: 29091589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Dependence of Energetics and Kinetics of Vacancy in Tungsten.
    Li ZZ; Li YH; Ren QY; Ma FF; Yue FY; Zhou HB; Lu GH
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the binding of nanometric hydrogen-helium clusters in tungsten.
    Bonny G; Grigorev P; Terentyev D
    J Phys Condens Matter; 2014 Dec; 26(48):485001. PubMed ID: 25324475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study.
    Fotopoulos V; Mora-Fonz D; Kleinbichler M; Bodlos R; Kozeschnik E; Romaner L; Shluger AL
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creeping motion of self interstitial atom clusters in tungsten.
    Zhou WH; Zhang CG; Li YG; Zeng Z
    Sci Rep; 2014 May; 4():5096. PubMed ID: 24865470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy.
    Amino T; Arakawa K; Mori H
    Sci Rep; 2016 May; 6():26099. PubMed ID: 27185352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.
    Wróbel JS; Nguyen-Manh D; Kurzydłowski KJ; Dudarev SL
    J Phys Condens Matter; 2017 Apr; 29(14):145403. PubMed ID: 28177296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirical potential for simulating hydrogen isotope retention in highly irradiated tungsten.
    Mason DR; Nguyen-Manh D; Lindblad VW; Granberg FG; Lavrentiev MY
    J Phys Condens Matter; 2023 Sep; 35(49):. PubMed ID: 37681432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W.
    Čák M; Hammerschmidt T; Rogal J; Vitek V; Drautz R
    J Phys Condens Matter; 2014 May; 26(19):195501. PubMed ID: 24762449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interatomic potentials for modelling radiation defects and dislocations in tungsten.
    Marinica MC; Ventelon L; Gilbert MR; Proville L; Dudarev SL; Marian J; Bencteux G; Willaime F
    J Phys Condens Matter; 2013 Oct; 25(39):395502. PubMed ID: 24002176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacancy trapping mechanism for multiple hydrogen and helium in beryllium: a first-principles study.
    Zhang P; Zhao J; Wen B
    J Phys Condens Matter; 2012 Mar; 24(9):095004. PubMed ID: 22275003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles investigation of oxygen interaction with hydrogen/helium/vacancy irradiation defects in Ti
    Meng Z; Wang C; Liu J; Wang Y; Zhu X; Yang L; Huang L
    Phys Chem Chem Phys; 2021 Mar; 23(9):5340-5351. PubMed ID: 33634300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg.
    Nandipati G; Govind N; Andersen A; Rohatgi A
    J Phys Condens Matter; 2016 Apr; 28(15):155001. PubMed ID: 26982368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides.
    Huang X; Zhai HJ; Li J; Wang LS
    J Phys Chem A; 2006 Jan; 110(1):85-92. PubMed ID: 16392843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen retention and diffusion in tungsten beryllide.
    Allouche A; Fernandez N; Ferro Y
    J Phys Condens Matter; 2014 Aug; 26(31):315012. PubMed ID: 25017090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy.
    Bonny G; Castin N; Bullens J; Bakaev A; Klaver TC; Terentyev D
    J Phys Condens Matter; 2013 Aug; 25(31):315401. PubMed ID: 23838265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface self-diffusion behavior of individual tungsten adatoms on rhombohedral clusters.
    Yang J; Hu W; Tang J
    J Phys Condens Matter; 2011 Oct; 23(39):395004. PubMed ID: 21918292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient catalytic activity for the hydrogen evolution reaction on pristine and monovacancy defected WP systems: a first-principles investigation.
    Ma Y; Yu G; Wang T; Zhang C; Huang X; Chen W
    Phys Chem Chem Phys; 2018 May; 20(20):13757-13764. PubMed ID: 29740655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.