These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28816305)

  • 1. Real-time atomic scale observation of void formation and anisotropic growth in II-VI semiconducting ribbons.
    Huang X; Jones T; Fan H; Willinger MG
    Nanoscale; 2017 Aug; 9(34):12479-12485. PubMed ID: 28816305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.
    Huang X; Willinger MG; Fan H; Xie ZL; Wang L; Klein-Hoffmann A; Girgsdies F; Lee CS; Meng XM
    Nanoscale; 2014 Aug; 6(15):8787-95. PubMed ID: 24954555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Engineering of Wurtzite and Zinc-Blende AlSb Shells on InAs Nanowires.
    Kindlund H; Zamani RR; Persson AR; Lehmann S; Wallenberg LR; Dick KA
    Nano Lett; 2018 Sep; 18(9):5775-5781. PubMed ID: 30133288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Shape Evolution and Phase Transition in InP Nanostructures Grown by Selective Area Epitaxy.
    Wang N; Wong WW; Yuan X; Li L; Jagadish C; Tan HH
    Small; 2021 May; 17(21):e2100263. PubMed ID: 33856732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ atomic-scale observation of irradiation-induced void formation.
    Xu W; Zhang Y; Cheng G; Jian W; Millett PC; Koch CC; Mathaudhu SN; Zhu Y
    Nat Commun; 2013; 4():2288. PubMed ID: 23912894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conduction Band Offset and Polarization Effects in InAs Nanowire Polytype Junctions.
    Chen IJ; Lehmann S; Nilsson M; Kivisaari P; Linke H; Dick KA; Thelander C
    Nano Lett; 2017 Feb; 17(2):902-908. PubMed ID: 28002673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of zinc blende and wurtzite CdSe nanostructures.
    Yang J; Tang H; Zhao Y; Zhang Y; Li J; Ni Z; Chen Y; Xu D
    Nanoscale; 2015 Oct; 7(38):16071-8. PubMed ID: 26372172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally controlled cyclic insertion/ejection of dopant ions and reversible zinc blende/wurtzite phase changes in ZnS nanostructures.
    Karan NS; Sarkar S; Sarma DD; Kundu P; Ravishankar N; Pradhan N
    J Am Chem Soc; 2011 Feb; 133(6):1666-9. PubMed ID: 21265549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations.
    Meng X; Xiao H; Wen X; Goddard WA; Li S; Qin G
    Phys Chem Chem Phys; 2013 Jun; 15(24):9531-9. PubMed ID: 23674155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S(1-x)Se(x))4 nanocrystals.
    Wu L; Fan FJ; Gong M; Ge J; Yu SH
    Nanoscale; 2014 Mar; 6(6):3418-22. PubMed ID: 24535200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth Planes.
    Staudinger P; Mauthe S; Moselund KE; Schmid H
    Nano Lett; 2018 Dec; 18(12):7856-7862. PubMed ID: 30427685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles.
    Dawood F; Schaak RE
    J Am Chem Soc; 2009 Jan; 131(2):424-5. PubMed ID: 19113854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces.
    Hjort M; Lehmann S; Knutsson J; Timm R; Jacobsson D; Lundgren E; Dick KA; Mikkelsen A
    Nano Lett; 2013 Sep; 13(9):4492-8. PubMed ID: 23941328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bare Cd1-xZnxS ZB/WZ Heterophase Nanojunctions for Visible Light Photocatalytic Hydrogen Production with High Efficiency.
    Du H; Liang K; Yuan CZ; Guo HL; Zhou X; Jiang YF; Xu AW
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24550-8. PubMed ID: 27598838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale.
    Schmiedeke P; Panciera F; Harmand JC; Travers L; Koblmüller G
    Nanoscale Adv; 2023 May; 5(11):2994-3004. PubMed ID: 37260482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable growth of pure wurtzite InGaAs microstructures.
    Ng KW; Ko WS; Lu F; Chang-Hasnain CJ
    Nano Lett; 2014 Aug; 14(8):4757-62. PubMed ID: 24988280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zn-dopant dependent defect evolution in GaN nanowires.
    Yang B; Liu B; Wang Y; Zhuang H; Liu Q; Yuan F; Jiang X
    Nanoscale; 2015 Oct; 7(39):16237-45. PubMed ID: 26371967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory.
    Hjort M; Lehmann S; Knutsson J; Zakharov AA; Du YA; Sakong S; Timm R; Nylund G; Lundgren E; Kratzer P; Dick KA; Mikkelsen A
    ACS Nano; 2014 Dec; 8(12):12346-55. PubMed ID: 25406069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.
    Meng F; Estruga M; Forticaux A; Morin SA; Wu Q; Hu Z; Jin S
    ACS Nano; 2013 Dec; 7(12):11369-78. PubMed ID: 24295225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Observation of Morphological Transformations in II-VI Semiconducting Nanobelts via Environmental Transmission Electron Microscopy.
    Agarwal R; Zakharov DN; Krook NM; Liu W; Berger JS; Stach EA; Agarwal R
    Nano Lett; 2015 May; 15(5):3303-8. PubMed ID: 25923720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.