These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28816309)
1. Reply to the 'Comment on "Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies"' by P. E. Lønning, Lab Chip, 2017, 17, DOI: 10.1039/C7LC00617A. Casper RF; Wheeler AR Lab Chip; 2017 Sep; 17(18):3188-3189. PubMed ID: 28816309 [TBL] [Abstract][Full Text] [Related]
2. Comment on "Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies" by S. Abdulwahab, A. H. C. Ng, M. D. Chamberlain, H. Ahmado, L.-A. Behan, H. Gomaa, R. F. Casper and A. R. Wheeler, Lab Chip, 2017, 17, 1594. Lønning PE Lab Chip; 2017 Sep; 17(18):3186-3187. PubMed ID: 28816306 [TBL] [Abstract][Full Text] [Related]
3. Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies. Abdulwahab S; Ng AHC; Chamberlain MD; Ahmado H; Behan LA; Gomaa H; Casper RF; Wheeler AR Lab Chip; 2017 May; 17(9):1594-1602. PubMed ID: 28379279 [TBL] [Abstract][Full Text] [Related]
4. Comment on "Robust scalable high throughput production of monodisperse drops" by E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner and D. A. Weitz, Lab Chip, 2016, 16, 4163. Nakajima M Lab Chip; 2017 Jun; 17(13):2330-2331. PubMed ID: 28603798 [TBL] [Abstract][Full Text] [Related]
5. Radiopharmaceutical therapy on-a-chip: a perspective on microfluidic-driven digital twins towards personalized cancer therapies. Abdollahi H; Saboury B; Soltani M; Shi K; Uribe C; Rahmim A Sci Bull (Beijing); 2023 Sep; 68(18):1983-1988. PubMed ID: 37573246 [No Abstract] [Full Text] [Related]
6. Reply to the 'Comment on "Robust scalable high throughput production of monodisperse drops"' by M. Nakajima, Lab Chip, 2017, 17, DOI: 10.1039/C7LC00181A. Amstad E; Weitz DA Lab Chip; 2017 Jun; 17(13):2332-2333. PubMed ID: 28603796 [TBL] [Abstract][Full Text] [Related]
7. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
8. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement. Liao C; Hu S IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570 [TBL] [Abstract][Full Text] [Related]
9. Digital High-Resolution Melt Platform for Rapid and Parallelized Molecule-by-Molecule Genetic Profiling. OrKeefe CM; Wang TL Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5342-5345. PubMed ID: 30441543 [TBL] [Abstract][Full Text] [Related]
10. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications. Bunge F; Driesche SVD; Vellekoop MJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531 [TBL] [Abstract][Full Text] [Related]
12. Identification of microfluidic two-phase flow patterns in lab-on-chip devices. Yang Z; Dong T; Halvorsen E Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885 [TBL] [Abstract][Full Text] [Related]
13. A solvent resistant lab-on-chip platform for radiochemistry applications. Rensch C; Lindner S; Salvamoser R; Leidner S; Böld C; Samper V; Taylor D; Baller M; Riese S; Bartenstein P; Wängler C; Wängler B Lab Chip; 2014 Jul; 14(14):2556-64. PubMed ID: 24879121 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic systems for cancer diagnostics. Garcia-Cordero JL; Maerkl SJ Curr Opin Biotechnol; 2020 Oct; 65():37-44. PubMed ID: 31891869 [TBL] [Abstract][Full Text] [Related]
15. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips. Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451 [TBL] [Abstract][Full Text] [Related]
16. A digital microfluidic method for multiplexed cell-based apoptosis assays. Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547 [TBL] [Abstract][Full Text] [Related]
17. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. Pandiyan VP; John R Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958 [TBL] [Abstract][Full Text] [Related]
18. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay. Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205 [TBL] [Abstract][Full Text] [Related]
19. Recent progress of microfluidic technology for pharmaceutical analysis. Jia X; Yang X; Luo G; Liang Q J Pharm Biomed Anal; 2022 Feb; 209():114534. PubMed ID: 34929566 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic device for digital manipulation of gaseous samples. Enel A; Bourrelier A; Vial J; Thiébaut D; Bourlon B Lab Chip; 2020 Apr; 20(7):1290-1297. PubMed ID: 32159188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]