These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28816432)

  • 1. An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms.
    Subramanian S; Tolstaya EI; Winkler TE; Bentley WE; Ghodssi R
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31362-31371. PubMed ID: 28816432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms.
    Huiszoon RC; Subramanian S; Ramiah Rajasekaran P; Beardslee LA; Bentley WE; Ghodssi R
    IEEE Trans Biomed Eng; 2019 May; 66(5):1337-1345. PubMed ID: 30281429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.
    Subramanian S; Gerasopoulos K; Guo M; Sintim HO; Bentley WE; Ghodssi R
    Biomed Microdevices; 2016 Oct; 18(5):95. PubMed ID: 27647148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system.
    Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S
    Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedimetric method for measuring ultra-low E. coli concentrations in human urine.
    Settu K; Chen CJ; Liu JT; Chen CL; Tsai JZ
    Biosens Bioelectron; 2015 Apr; 66():244-50. PubMed ID: 25437359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes.
    Paredes J; Becerro S; Arana S
    J Microbiol Methods; 2014 May; 100():77-83. PubMed ID: 24632516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy.
    Estrada-Leypon O; Moya A; Guimera A; Gabriel G; Agut M; Sanchez B; Borros S
    Bioelectrochemistry; 2015 Oct; 105():56-64. PubMed ID: 26004850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy.
    Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli.
    Wang R; Xu Y; Liu H; Peng J; Irudayaraj J; Cui F
    Biomed Microdevices; 2017 Jun; 19(2):34. PubMed ID: 28432530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip.
    Liu L; Xu Y; Cui F; Xia Y; Chen L; Mou X; Lv J
    Biosens Bioelectron; 2018 Jul; 112():86-92. PubMed ID: 29698812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring biofilm growth and dispersal in real-time with impedance biosensors.
    McGlennen M; Dieser M; Foreman CM; Warnat S
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37653441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array.
    Yeor-Davidi E; Zverzhinetsky M; Krivitsky V; Patolsky F
    J Nanobiotechnology; 2020 May; 18(1):81. PubMed ID: 32448291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique.
    Shaik S; Saminathan A; Sharma D; Krishnaswamy JA; Mahapatra DR
    Biomed Microdevices; 2021 Apr; 23(2):26. PubMed ID: 33885989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and removal of pathogenic biofilms on medical implant surfaces.
    Dunlop P; Oliver L; Byrne T; McAdams E
    Stud Health Technol Inform; 2005; 117():213-7. PubMed ID: 16282672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor.
    Pires L; Sachsenheimer K; Kleintschek T; Waldbaur A; Schwartz T; Rapp BE
    Biosens Bioelectron; 2013 Sep; 47():157-63. PubMed ID: 23570679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic microparticle-labeled impedance sensor array for enhancing immunoassay sensitivity.
    Khodayari Bavil A; Sticker D; Rothbauer M; Ertl P; Kim J
    Analyst; 2021 May; 146(10):3289-3298. PubMed ID: 33999058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.
    Bruchmann J; Sachsenheimer K; Rapp BE; Schwartz T
    PLoS One; 2015; 10(2):e0117300. PubMed ID: 25706987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp.
    Zarabadi MP; Paquet-Mercier F; Charette SJ; Greener J
    Langmuir; 2017 Feb; 33(8):2041-2049. PubMed ID: 28147485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells.
    Varshney M; Li Y
    Biosens Bioelectron; 2009 Jun; 24(10):2951-60. PubMed ID: 19041235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing.
    Zang F; Gerasopoulos K; Brown AD; Culver JN; Ghodssi R
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8471-8479. PubMed ID: 28211673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.